
HARDWARE USER'S MANUAL
for the

VersaPump 3

SYRINGE DISPENSER MODULE

Kloehn Ltd.
10000 Banburry Cross Drive

Las Vegas, NV  89144 
U.S.A.

Telephone: (702) 243-7727
Fax: (702) 243-6036

Part Number 23454
Revision D for

V3 Firmware Version 5

Copyright (C) 2002, Kloehn Ltd., all rights reserved worldwide.



NOTICE

The Kloehn Company maintains a continuous process of product evaluation and
improvement.  This is done through in-house engineering evaluations, market research,
and customer feedback.  As a result of this process , Kloehn offers the most capable and
sophisticated syringe pumps and valve drives in the world today, at competitive prices.  To
sustain this effort, Kloehn Company reserves the right to evolve and upgrade its standard
products at Kloehn Company’s discretion.

The Kloehn Company has a policy of making every effort to ensure all upgrades are fully
backwards-compatible with earlier versions.  We have been successful in nearly all
respects,  producing  better and  more capable versions of our standard products which
can be seamlessly integrated into existing system designs without increasing prices.
However, differences may exist in internal parts and materials, and rarely, in firmware
commands.

If such differences may impact your product certifications,  or if a unique configuration must
be maintained over long production runs,  contact Kloehn Customer Service to inquire
about  assigning a unique part identification for your application.    Alternatively, you may
request to add your name to the list of customers to be notified of changes prior to release
of standard product upgrades.

Kloehn Customer Service:     (702) 243-7727    or    1-800-358-4342



P/N 23454 Rev. D, 09-02-04
i

TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Supporting Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 KSerial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Kcom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Kloehn Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.4 WinPump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.0 CARD EDGE INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Power Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.2 Low Voltage Warning . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.3 Power Supply Capacity . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.4 Power Supply Selection . . . . . . . . . . . . . . . . . . . . . 7
2.1.1.5 Multiple-Unit Power Distribution . . . . . . . . . . . . . . . 7

2.1.2 Address Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Digital Voltmeter Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 User Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Error Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 5Vdc Power Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 SERIAL I/O EXPANSION (SIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 COMMUNICATIONS I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 RS485 Communications I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 RS232 Communications I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 REAR PANEL SWITCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Com Setup Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 CONNECTOR KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.0 GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 INSTALLING a VALVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 INSTALLING a SYRINGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 CONNECTING POWER and COMMUNICATIONS . . . . . . . . . . . . . . . 16

3.3.1 With the Starter Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1.1 Card Edge Adapter Board . . . . . . . . . . . . . . . . . . . 16
3.3.1.2 Communications Cable . . . . . . . . . . . . . . . . . . . . . 16
3.3.1.3 Power Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Without the Starter Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 SETTING the SWITCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Com Setup Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Address Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 SETTING UP  COMMUNICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.1 Setting up HyperTerminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Checking the Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 SENDING COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.1 General Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



P/N 23454 Rev. D, 09-02-04
ii

3.6.2 Command Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.3 Pump Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.4 Configuring the Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.5 Calibrating the Syringe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.6 Sending Some Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.0 COMMAND SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 SYRINGE COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Positioning Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Motion Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Syringe Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 VALVE COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Valve Type Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Valve Position Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Valve Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 I/O COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Output Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Input Query Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Input Test and Jump Commands . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 USER PROGRAM COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Program Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Program Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3.1 Jumps and Labels . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3.2 Repeat Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.3.3 Time Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.1 General Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1.1 Setting a General Variable . . . . . . . . . . . . . . . . . . 40
4.5.1.2 Using a General Variable . . . . . . . . . . . . . . . . . . . 41

4.5.2 Indirect Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.3 List of Commands Using Variables . . . . . . . . . . . . . . . . . . . . . . 42

4.6 CONFIGURATION  COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 QUERY COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 ERROR TRAPPING COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8.1 Trap Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.2 Trap Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8.3 Error Trap Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 MISCELLANEOUS  COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9.1 Software Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9.2 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9.3 SET HOME Button Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9.4 External Syringe Motion Limit Input . . . . . . . . . . . . . . . . . . . . . . 52
4.9.5 Motor Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.9.6 Repeat Command String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.0  STATUS  &  ERROR  MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 STATUS SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 DETAILED EXPLANATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.0 COMMUNICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 INDIVIDUAL DEVICE ADDRESSING . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 MULTIPLE DEVICE ADDRESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



P/N 23454 Rev. D, 09-02-04
iii

6.2.1 Dual Device Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Quad Device Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.3 Global Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 COMMUNICATIONS PROTOCOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 DT Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 DT Response Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.3 OEM Command Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4 OEM Response Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 COMMUNICATIONS SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 CONNECTING MULTIPLE DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5.1 Bus Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5.2 Bus Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 COMMUNICATIONS CHECKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.7 COMMUNICATIONS DRIVERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.0 PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.1 TEMPORARY MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 NONVOLATILE MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 Saving and Erasing a Program . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.2 Listing a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.3 Auto-Starting an NVM Program . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.4 Externally Starting a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.0 PROGRAMMING TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1 CONTROLLER INTERFACE SOFTWARE . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1.2 Sending Single Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.1.3 Using Stored Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.1.4 Protecting the User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 PUMP PROGRAMMING TIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2.1 Programming Very Slow Moves . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2.2 Programming Error Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.3 Setting the Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.4 Counting Program Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.5 Converting Volume to Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 I/O INTERFACE PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.1 Waiting for an Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.2 Handshaking Between Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.3 Programming Continuous Flow . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3.4 The DVM as a Selector Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.5 Position Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.6 Using the Expansion Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.7 Generating External Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.8 A Binary Input Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.9  Driving External LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3.10  Wired-Or Error Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.0 POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.1 POWER SUPPLY SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.1.1 Capacity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.1.2 Type Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2 SYSTEM WIRING PRACTICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 LOW VOLTAGE CONDITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.4 POWER CONSERVATION FOR BATTERY APPLICATIONS . . . . . . . 88



P/N 23454 Rev. D, 09-02-04
iv

10.0 MOUNTING & INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11.0 SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.1 ENVIRONMENTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 PHYSICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.3 POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.4 SYRINGE AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

11.4.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.4.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.4.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.4.4 Syringe Thrust and Pressure . . . . . . . . . . . . . . . . . . . . . . 92

11.5 VALVE AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.6 COMMUNICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.7 I/O INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11.7.1 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.7.2 Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.7.3 Digital Voltmeter Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.7.4 Serial I/O Expansion Port . . . . . . . . . . . . . . . . . . . . . . . . 94

11.8 USER PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX A:   COMMAND SET SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1 COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

APPENDIX B:     STATUS and ERROR CODES SUMMARY . . . . . . . . . . . . . . . . . 106

APPENDIX C     SAMPLE QBASIC COMMUNICATIONS PROGRAM . . . . . . . . . . 107

LIST OF FIGURES

Figure 1-1     VersaPump 3 shown with syringe and valve installed . . . . . . . . . . . . . . . 2
Figure 1-2     Pump Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2-1     Syringe Drive Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2-2     Equivalent Circuits of the User Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2-3     Com Setup Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2-4     Connector Key Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3-1     Card Edge Adapter Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3-4     Pump Connections With Card Edge Connector . . . . . . . . . . . . . . . . . . 19
Figure 3-5     RS232 Communications Cable Wiring . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4-1     Relative vs Absolute Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 6-1     Multi-device Wiring Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 8-1     Normal Syringe Speed Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 8-2     Slow Acceleration or Short Move Speed Profile . . . . . . . . . . . . . . . . . . 74
Figure 8-3     Handshake Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 8-4     Sample 8-bit Input Circuit for Expansion I/O . . . . . . . . . . . . . . . . . . . . . 83
Figure 8-5     Binary Selection Tree Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 10-1:     Mounting Dimensions for VersaPump 3 . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 11-1       Serial Expansion I/O timing, 2-byte mode . . . . . . . . . . . . . . . . . . . . . 95
Figure 11-2       Serial Expansion I/O timing, single-byte mode . . . . . . . . . . . . . . . . . 96



P/N 23454 Rev. D, 09-02-04
v



P/N 23454 Rev. D, 09-02-04
1

1.0 INTRODUCTION

1.1 GENERAL DESCRIPTION

The Kloehn VersaPump 3 (V3) syringe pump shown in Figure 1-1 is a
programmable, precision, liquid metering instrument with user-programmable
memory and Input / Output (I/O).   It offers 6000 or 12,000 step resolution for its 3
cm stroke.  Two to six port valves can be mounted, and syringes from 50 uL to 5 mL
can be used.  The unit can accept individual commands or programs via its serial
communications interfaces.

Two-way, serial communications between the V3 and a controlling host is done via
an RS485 or RS232 interface.  Up to 15 addressable pumps or other devices can
share a single, standard, bidirectional RS485 communications bus, controlled from
a single PC serial port at baud rates from 1200 to 38,400 baud.  Two protocols, DT
and OEM, are supported, both of which are fully compatible with the Cavro
protocols.  The unit may be interrogated for status or operating parameter values
at any time.  Individual commands or groups of commands may be sent for
immediate or later execution by the pump.

Command strings, or programs, can be executed from RAM or may be stored into
and executed from the non-volatile memory (NVM).  Up to 10 programs may be
stored.  A program in the NVM can be set to self-start when power is first applied
to the pump and immediately after a Reset input.  Program retention in the NVM is
typically greater than 15 years without batteries.  Program looping and if-then
program flow control is supported.

Three external logic inputs and three logic outputs permit interfacing to a variety of
other devices.   One input can be used to halt a dispense in progress.  A built-in
digital  voltmeter (DVM) is included.  For  applications which require more I/O, an
I/O expander card is available to provide 16 more inputs and 16 more outputs.  

Many different program test-and-jump instructions allow the pump to respond to
external events and conditions as well as internal program conditions.  External
inputs can be used to set internal programmed operating parameters.  The I/O can
be  used to operate a synchronized, two-pump, continuous flow application.   Real-
time, remotely-controlled and monitored I/O is supported simultaneously with other
pump operations.

The V3 interface is located on a single card edge connector at the rear of the pump.
This permits simple wiring connections and the use of modular, plug-in mounting.

1.2 OPTIONS

The VersaPump 3 series can be ordered in 6000 or 12,000 step resolutions, with
or without valves.  A starter kit with all the things needed to begin using the pump
is also available from Kloehn Company.  The kit includes cables, power supply,
manuals, and software.

There are versions of the VersaPump3 which do not have any motor driver or
control electronics.  These versions come with an interface board containing the
electromechanical interfaces and a convenient card edge connector.



P/N 23454 Rev. D, 09-02-04
2

Figure 1-1     VersaPump 3 shown with syringe and valve installed



P/N 23454 Rev. D, 09-02-04
3

Figure 1-2     Pump Nomenclature

1.3 Supporting Software

All Kloehn supporting software is available by request at no charge on a CD.  The
CD also contains manuals and application notes for Kloehn pumps and valve drives.
In the subsections which follow,  the terms “Kloehn  products” and “device” refer to
all Kloehn pumps and valve drives which have integrated microprocessor control.

1.3.1 KSerial

KSerial is a command-driven program, operating at the command line prompt, used
to communicate between Kloehn products and a PC.  KSerial handles the
communications overhead for both the DT and OEM protocols while providing error
checking and response interpretations.  The program has numerous options to set



P/N 23454 Rev. D, 09-02-04
4

protocol, format and baud rate.  KSerial runs in a “DOS window” or “Command
prompt window” in Windows© 98, ME, 2000 or XP.

1.3.2 Kcom

Kcom functions as an intelligent terminal program customized for control and
programming of Kloehn products.   It runs in a Windows©  environment under
Windows 95, 98, ME, 2000, and XP.  A command input box with full editing
capability is used to create commands strings to send to a device.  A response
window displays responses from the device with interpretations.  Commands can
be typed into the command window directly or selected from a drop box list with
prompts for command parameters.  Program strings can be stored and recalled
from PC memory for downloading to a device.

1.3.3 Kloehn Control

Kloehn Control   is a program for  automating the control of microprocessor
controlled pumps and valves. It provides graphical manual controls and tools for
writing, debugging and running pump and valve control scripts. Scripts are control
program strings which can run in a device or on a computer that controls a pump.
Kloehn Control scripting is especially useful if

• You need to write programs that are lengthy, parameterized, or frequently modified
such as an assay method.

• You need computer automation of pumps and valves without investing the time to
learn programming or write software.

A script can be a substitute for  software or can be used by software as a
subroutine.  Scripts can be used as subroutines that handle real-time I/O signaling
and triggering capabilities and automation details.   Script commands are expressed
in terms of the user's physical units, variables, and arithmetic expressions.

Kloehn Control scripts use relatively plain-English commands such as "ASPIRATE"
and "VALVE_PORT" that can run on different devices.  Using one set of script
commands simplifies automation by bridging the differences of firmware, resolution,
microprocessor, and computer.  As scripting is menu-driven,  you do not need to
know the command set before writing your first script.    Error  messages  point out
errors in syntax, configuration, and parameter values.   Scripts can be test-run in
simulation mode without hardware to catch many run-time errors quickly.

Kloehn Control provides standard Integrated Development Environment (IDE) tools:
file handling, editing, compiling, simulation, and watch windows for variables and
device parameters.

1.3.4 WinPump

WinPump is a first-generation program for creating and debugging program strings
which execute in a device.     WinPump is designed to run under DOS©  or
Windows© 3.1.  It is now obsolete.



P/N 23454 Rev. D, 09-02-04
5

2.0 CARD EDGE INTERFACE

All electrical interfaces are located on the pins of the rear card-edge, P1, shown in
Figure 1-1.  The mating connector is a dual-row, 18 pins-per-row, card-edge
connector on 0.156 inch centers.    A connector can be obtained from Digi-Key
(800-344-4539, or (www.digikey.com ) as part number EDC305360-ND.  The P1
pinout is shown in Figure 2-1.

2.1 INPUTS

2.1.1 Power Input

2.1.1.1 Connection

Power for the pump is input on 33 through 36 of the card edge connector.  The
positive power lead is duplicated on pins 35 and 36.  The power ground is
duplicated on pins 33 and 34.  This permits two solid, straight wires to be passed
through the edge connector in-line for a multi-pump system with plug-in pump
modules.

2.1.1.2 Low Voltage Warning

When the pump supply voltage drops below an internal reference minimum (20V),
a "Low Voltage" error message is generated.  This message is generated only once
for each drop in voltage.  Continued low voltage is not reported in an error message;
the voltage should be monitored, if necessary, by repeated queries of the supply
voltage.  Another low voltage error message will be generated only if the voltage
should rise above the reference minimum and then drop below it again.  If
continuous low voltage error messages occur, the most likely causes are low-
frequency noise or ripple on the power supply.

While the voltage remains below the minimum, valve and syringe moves are
inhibited.  However, unless the supply voltage drops below about 8 Vdc, the internal
control electronics and memory are not affected and all other instructions, such as
I/O operations and queries, will still operate normally after the low voltage error
message has been reported or cleared.

Some power supplies will turn on gradually.  If the rise time of the supply is slow
enough, the internal computer may report a "Low Voltage" error when the pump is
initially queried.  This will not cause any operational problems after the message
has been reported or cleared.

2.1.1.3 Power Supply Capacity

The power supply capacity should be consistent with the specifications of Section
10.3 of this manual both with regard to dc requirements and ac transient capability.
If a Kloehn power supply is used, these specifications will be met.

An output capacity of 25 watts at 24 Vdc is considered a practical value for a one-
pump power supply for normal pump operation.  The normal idle power
consumption is about 9 watts.  The 25 watt rating allows for power required during



P/N 23454 Rev. D, 09-02-04
6

Figure 2-1     Syringe Drive Interfaces

syringe and valve moves, with a derating for reliability.  The ac transient currents
during syringe moves are negligible.  During valve moves, the maximum current
waveform has a 1.67 KHz sinusoidal shape with peaks at zero and 1.5 A.

For multiple pumps on one supply, the overall system operation should be
considered.  If there are N pumps, of which only M units will be making a syringe or
valve move at the same time, then the power capacity of the supply should be at
least    25M + 9(N-M)  watts.  If the syringes do not have to hold position against a
back pressure, then the syringe motors can be turned off between moves, reducing
the idle power per pump from 9 watts to 3 watts.  There is no need to have the valve
motor turned on when a valve move is not in progress.  The pump automatically
turns on the valve motor for moves and then turns it off when not moving.

In-rush current at initial power-up is approximately 1.4 A for about 1.7 milliseconds,
then decaying to the idle current value.



P/N 23454 Rev. D, 09-02-04
7

2.1.1.4 Power Supply Selection

There are four classes of power supply: unregulated DC, linear regulator types,
switching regulator types, and batteries.  Each has different selection
considerations.

The unregulated supply is the cheapest and simplest.  Due to its unregulated
nature, it is not recommended.

The linear regulator supply usually has a protective current limiting.  This limit value
must be set to at least 1.5 A to allow for the start-up in-rush current.

A switching power supply is the preferred choice.  It offers higher efficiency, lower
heat generation, and a well-filtered output.  Note that some switching power
supplies have a minimum load current requirement.  Since the pump can idle as low
as 50 milliamps, the supply should be rated for a minimum load current equal to the
minimum total system idle current.  A ballast resistor may be added across the
supply output to guarantee the minimum load requirement of the supply.

Battery operation from 24 V battery systems is feasible.  The wide operating range
makes this possible.  In most cases, a standby battery voltage of 28 Vdc is seen in
automotive and aircraft systems.  This is acceptable for normal operation.  Mobile
systems should provide overvoltage clamping for transients exceeding 34 Vdc.

2.1.1.5 Multiple-Unit Power Distribution

In a system with multiple syringe drive modules, the power distribution wiring can
affect the system reliability.  The best system wiring practice is to connect each
drive module with an individual pair of power leads from the power supply to that
individual module.  This is called a "star" connection.  The power leads for each
module should be twisted together along their length to reduce radiated fields.
External filter capacitors are not required, as internal filters are included.

2.1.2 Address Inputs

The device address on the communications bus can be hard-wired into the
connector so a device can be inserted into an instrument without a need to set the
address switch to a particular location.  To use this feature, that address switch
must be in the “F” position.  If the address switch is in any other position, a conflict
will result between a hard-wired address and the address indicated on the switch.

The address inputs have built-in pull up resistors and use positive logic.  The default
Address input level is logic “1".  A logic “0" is made by grounding an Address pin.
The address is set as a 4-bit binary number by shorting those pins to ground which
should have a zero value.  The address weighting on the pins is as follows:

Address 8 = 8 Address 4 = 4 Address 2 = 2 Address 1 = 1

The address value  is the sum of the pin weights which are not connected to
ground.  See Table 2-1 for the pin connections corresponding to the equivalent
address switch settings.

To wire an address onto the card edge connector, convert the address “1" through



P/N 23454 Rev. D, 09-02-04
8

To use the hard-wired address, the Address Switch MUST be set to “F”. 
If it is not, an address conflict will exist between the wiring and the switch.

The address can be set with either the address switch or with the card
edged connector wiring.  Only one of the two methods may be used.

“F” into a binary representation of the hexadecimal number and ground the pins
which should have a zero value.

The pin connections are shown below.  A “Ground” indicates the pin should be
connected to a ground pin. The notation “n/c”signifies there should be no
connection to the pin.

Address Address 8 Address 4 Address 2 Address 1

1 Ground Ground Ground n/c

2 Ground Ground n/c Ground

3 Ground Ground n/c n/c

4 Ground n/c Ground Ground

5 Ground n/c Ground n/c

6 Ground n/c n/c Ground

7 Ground n/c n/c n/c

8 n/c Ground Ground Ground

9 n/c Ground Ground n/c

A n/c Ground n/c Ground

B n/c Ground n/c n/c

C n/c n/c Ground Ground

D n/c n/c Ground n/c

E n/c n/c n/c Ground

F n/c n/c n/c n/c

Table 2-1     Hard-Wired Address Table

If the card edge connector wiring method is NOT used to set the pump address, the
address must be set with the Address Switch (Figure 2-1).



P/N 23454 Rev. D, 09-02-04
9

2.1.3 Digital Voltmeter Input

An 8-bit digital voltmeter (DVM) is built into the pump I/O.  It is accessible on pins
27 and 28.  The analog signal to be read should be placed on pin 27 and the analog
signal ground should be connected to pin 28.

The DVM Input allows 8-bit measurements of external analog voltages.   Analog
values may be reported to the host controller, or used within a user program to
compare a measured analog value to a user-preset value to make a conditional
program jump.  Also, the DVM Input can be used to set program instruction
parameter values, as described in Section 4.5.2.

The input impedance is 1 Mohm for dc inputs, and is 20 Kohm in series with 0.1 uF
capacitance to ground for high-frequency signals.  This input impedance is due to
the anti-aliasing filter.  The anti-aliasing filter at the input, shown in Figure 2.2A, has
a -3 dB cutoff frequency of 80 Hz, and an attenuation rate of -6 dB/octave above the
cutoff frequency.  Although the conversion time for an input sample is approximately
18 microseconds, the time constant of the filter is 2 milliseconds.  If the input value
changes, 5.5 time constants are required, worst-case, for the new value to settle to
within the resolution (1/256 of full scale) of the DVM.  If an abrupt step change were
to occur as a conversion begins, the input filter time constant will insure that the
correct valve at the start of conversion will be read to within the DVM accuracy.

The input voltage range is 0 to 5.1 V, corresponding to an internal conversion
integer value from 0 to 255, respectively.  It is recommended that the input voltage
range be restricted to 5 V or less.  Each increment of internal value (an LSB)
corresponds to an analog input increment of 20 mV.

Figure 2-2     Equivalent Circuits of the User Inputs

The internal numerical value for a DVM input can be calculated by this relation:

N = 50 x Vin where N = internal integer value
and Vin = analog input voltage

To avoid noise and errors due to ground loops, the ground wire of the voltage
source to be measured should be twisted together with the input wire (a "twisted
pair") and connected directly to the analog ground pin.  If a shielded, twisted pair is
used, the shield should be grounded at one end only.



P/N 23454 Rev. D, 09-02-04
10

Do NOT apply voltages greater than 30 Volts to a User Input.

2.1.4 Reset Input

A Reset Input is located on pin 25.  When this pin is brought low (below 0.8Vdc),
the processor resets.  The reset condition remains active while the input is low.
When the input is returned high, the processor begins a pump initialization cycle
after a 0.25 seconds delay.  The Reset Input is referenced to a ground on one of
pins 23 to 26.  Reset is also automatically generated internally when power is first
applied.  A reset causes the following actions:

(1)   a checksum is computed on the firmware memory to verify its integrity
(2)   the syringe position value is set to zero (position is no longer valid)
(3)   the "position snapshot" values are reset to "-1"
(4)   any error messages are erased (cleared) and the Error Out is turned OFF
(5)   the valve moves to the "home", or port A position, if enabled
(6)   temporary memory (RAM) is cleared
(7)   the communications buffer is cleared
(8)   the pump address is read and saved
(9)   the Com Setup Switch status is read and saved
(10) syringe speeds are set to the values saved in the non-volatile memory
(11) the User Outputs are reset to OFF

2.1.5 User Digital Inputs

Three  Digital Inputs are provided on pins 18, 20, and 22.  Each of these inputs
can be queried at any time, even during pump operation and while an internal
program is executing.  These inputs may also be used to control operation of the
pump.

As shown in the equivalent input circuit in Figure 2-2B, each input has a 4.7K pull-
up resistor and is protected for input voltages up to 30 Vdc.  Inputs are compatible
with CMOS and TTL logic operating from 5V supplies, with other pump's digital
outputs, and with external switches.  An "on" input is less than 1 V.  An "off" input
is more than 3.5 V, or an open circuit. The internal resistance provides the bias
required for external switches.  External switches should make a connection to
ground when in the "on" condition.  

2.2 OUTPUTS

2.2.1 Digital Outputs

Three digital outputs are provided on pins 17, 19, and 12.  These outputs appear
directly opposite the digital inputs described in Section 3.5.  Each output consists
of an “HC” type CMOS output  with a signal span of zero to 5 Vdc.  The outputs may
be controlled under internal user program control or may be set by external
commands from a controller.

The Digital Outputs are “active low”.    An “on” condition outputs a low logic level.
An “off” condition outputs a logic high level.  This is compatibility with the digital
input logic levels.  The maximum safe output current is specified in Section 10.7.1.



P/N 23454 Rev. D, 09-02-04
11

The Digital Outputs are “HC” type CMOS active outputs.  Connect ONLY to
logic inputs.  Do NOT attempt to drive relays or solenoids.

2.2.2 Error Outputs

Pin 16 provides an Error Out suitable for driving logic or an LED indicator.  The
output is active whenever an unreported error condition exists within the pump.
When an error condition occurs, the Error Out on pin 16 is set to an “on” condition,
which acts like a 5 ohm resistance to ground.  In the absence of and error or after
an error has been reported to a controller via the communications I/O, the Error Out
is an open-circuit.

The Error Bias  output on pin 15 consists of a 330 ohm resistor connected
internally to the +5 Vdc power.  This output provides a current-limited output suitable
for direct  drive of an LED indicator anode.  To drive an external LED error indicator,
connect pin 15 to the anode and pin 16 to the cathode.

If an LED is not used, the Error Out can be used to drive some other error
indicating device.  The maximum output voltage in the “off” condition is 40 volts.  If
an external supply is used, a common ground connection should be taken from the
I/O ground to the external supply  ground.  Since no internal protection is provided
for inductive loads, if relays or solenoids are driven, a clamp diode across the load
is required.  For sending an error indication to a remote electronic equipment, the
Error Out pin can be used to drive the input of an opto-isolator.  

The Error outputs of several devices may be tied together to make a single "wire-
OR'ed" system error signal.  This signal may be used to drive a LED or an input to
a controller.

2.2.3 5Vdc Power Output

To power external I/O circuits, the card edge interface includes a +5 Vdc power
output on pin 5.  This output is rated for loads up to 100 mAdc.  Any of the Ground
pins on the card edge may be used in conjunction with this pin.

2.3 SERIAL I/O EXPANSION (SIO)

The serial I/O (SIO) expansion port is independent of the serial communications
port and is located on pins 1 through 6 of the edge connector.  The SIO uses four
signals: SIO Input, SIO Output, SIO Clock, and SIO Strobe.

The SIO Input receives serial data as 8-bit bytes from an external circuit and the
SIO Output sends data as 8-bit bytes from the pump.  The SIO port acts as a
“master” using the SIO Clock to synchronize the serial data transfers bit-by-bit.  The
SIO Strobe acts as a synchronous, active-low enable signal for external devices.

Depending on the value of the SIO mode parameter “~S”, SIO operation will
perform  one-byte or two-byte data transfers.



P/N 23454 Rev. D, 09-02-04
12

Do NOT have more than two RS485 bias networks switched “on”, regardless
of the number of devices on the bus.  Use ONLY one network “on” at each
end of the overall RS485 bus wiring.  

An RS485 bus with multiple devices must be wired directly from device-to-
device, using “A”, “B”, and “Com Ground” pins.

2.4 COMMUNICATIONS I/O

The pump provides serial communications compatible with PC serial ports and
RS485 I/O cards.  There are to physical protocols, RS232 and RS485.  There are
two communications protocols, DT and OEM.  See Section 6.4 for the
communications physical protocol specifications and Section 6.3 for the
communications protocols.

2.4.1 RS485 Communications I/O

The RS485 I/O is available on pins 11 through 14.  There are two signals, RS485
“A” and RS485 “B”.  The "A" line is the "positive" line, and the "B" line is the
"negative" line under idle bias conditions.  To prevent  common-mode voltage
errors,  the communications should also use the Com Ground on pin 10 for an
RS485 communication ground in addition to the "A" and "B" lines.

The “A” signal is duplicated on pins 13 and 14, while the “B” signal is duplicated on
pins 11 and 12.  This duplication permits a straight wire to pass straight through
each pair of the “A” and “B” lines to interconnect a series of devices.

The RS485 bus requires a proper bias and termination network for reliable
operation.  The necessary network is included in the pump and is applied via the
RS484 Bias toggles “1" and “2" on the Com Setup Switch shown in Figure 2-3.
The first and last devices on an RS485 bus should have the network switched “on”.
All other devices between the first and last devices should have the network
switched “off”.  A toggle is “on” when the button is positioned to the center of the
switch housing;  a toggle is “off” when the button is positioned nearest the edge of
the switch housing.

The com bus wiring should be a twisted pair for the “A” and “B” signals.  The rate
of twist should be approximately one to three turns per inch.  The ground wire may
be a shield or a third wire twisted with the “A” and “B” wires.

2.4.2 RS232 Communications I/O

An  RS232  communications option is available on the card  edge  connector.   This
provides a communications I/O compatible with the serial ports found on PCs and
controllers.

There are two lines: RS232 Rx on pin 7 and RS232 Tx on pin 8.  The Tx pin sends
data from the pump to a controller, and the Rx pin receives data from a controller



P/N 23454 Rev. D, 09-02-04
13

The Default toggle (number 4) must be “Off” to enable programs to autostart.

The Default toggle (number 4) must be in the “Off” position  to permit the
baud rate and protocol to change from the factory default settings.

Turn “On” BOTH toggles 1 and 2 to connect the RS485 bias network. 
Whether “On” or “Off”, both toggles must be in the same position.

to the pump.  The Com Ground connection on pin 10 should be used to connect
a communications ground line to the controller.

The RS232 protocol uses no flow control.  Therefore, no signals other than RS232
RxD, TxD, and Com Ground are needed for serial communications.

2.5 REAR PANEL SWITCHES

2.5.1 Com Setup Switch

The Com Setup Switch, shown in Figure 2-1, is located at the top, left, rear corner
of the pump.  This switch has four “toggles”, or “buttons” numbered “1" through “4".
These toggles control whether the RS485 bias network is attached to the RS585
bus and  whether the communications defaults for baud rate and protocol are set
to the factory default values or to the values set in the configuration variables.  
The toggles are numbered from “1" at the top to “4" at the bottom of the switch.  The
toggle assignments are shown in Figure 2-3 below

Figure 2-3     Com Setup Switch



P/N 23454 Rev. D, 09-02-04
14

2.5.2 Address Switch

The Address Switch, shown in Figure 2-1, sets the communications address of the
pump on the RS485 bus.  There are 15 legal pump  addresses on the switch: “1"
through “F”.  Address “0" is reserved for a controller address and cannot be used
for a pump address.  

If  the Address Switch is set to “F”, the pump address may be  determined by
wiring the Address pins on the card edge connector, as explained in Section 2.2.
If the switch is in any other position, the wired address will conflict with the switch
address.

Figure 2-4     Connector Key Slot

2.6 CONNECTOR KEY

As shown in Figure 1-2, the card edge connector is supplied with a “key”.  This key
is a plastic insert in the connector which corresponds to the slot in the card edge as
depicted in Figure 2-4.

Check the key to ensure it is in the proper position in the connector to match the slot
in the card edge.  The key may be moved by grasping it with a needle-nose plier
and pulling it out of the connector.  The key may be inserted into the connector by
pressing  the key into the detents which are located  between each opposing pair
of connector contacts.



P/N 23454 Rev. D, 09-02-04
15

Note:    The valve should be in the port A position when installing the valve.

Note:    If the valve is rotated too far during installation, the valve may be
installed with the ports 180 degrees out of position.

3.0 GETTING STARTED

This section describes the basic setup required to control a single VersaPump 3
from a PC.  Refer to Figure 1-2 for the assembly illustration.  The following items are
required for a basic bump installation:

Quantity Item
    (1) VersaPump 3 drive module
    (1) Valve
    (1) Syringe
    (1+) Teflon washer (one per port used + syringe)
    (1) Power supply (24 to 30 Vdc, 25 Watts)
    (1) Communications cable, PC-to-pump, Kloehn P/N 17734
    (1) PC communications software
    (1) Card edge adapter board, Kloehn P/N 23352 or card edge connector,

Kloehn P/N 23277 or equivalent.

Getting started requires certain basic actions be taken, in order.  These actions are:

(1) Install a valve.
(2) Install a syringe.
(3) Set the Com Setup and Address switches.
(4) Connect power and communications.
(5) Configure the pump.

Section 3 leads the first-time user through these steps using either the Kloehn
Starter Kit or user-supplied power and wiring.  Advanced users can go directly to
Section 4 to study the command set.

3.1 INSTALLING a VALVE

(1) Turn on the power to the pump and press the Initialize Button on the front
panel of the pump.  Wait for the initialize move to complete.  The slot in the
valve drive shaft should be horizontal.

(2) Insert the valve into the faceplate so that the Valve Index Pin engages a
corresponding  hole in the valve and the valve drive motor shaft slot engages
the blade in the back of the valve.  It may be necessary to rotate the valve
slightly to cause full engagement of both the index pin and the motor shaft.
The valve should seat flush onto the pump faceplate.

(3) Install the two Valve Screws through the valve and into the faceplate.
Tighten the screws firmly, but only finger tight.  Over-tightening can damage
the valve.



P/N 23454 Rev. D, 09-02-04
16

Note:     The Teflon washer MUST be used to ensure the syringe fully seats. 
If the washer is not inserted, the syringe will not seat properly and will leak.

3.2 INSTALLING a SYRINGE

(1) Place a Teflon® washer into the syringe port on the valve.  This port is
located at the bottom of the valve.

(2) Insert the syringe into the syringe port and tighten to a finger-tight tension.
Do not over-tighten the syringe, as the hole in the washer will tend to clod
flow into a smaller diameter over time.

3.3 CONNECTING POWER and COMMUNICATIONS

There are two methods for connecting the pump to power and a PC.  One method
uses the Kloehn Starter Kit and the other method uses a Card edge connector with
user-supplied wiring.  Section 3.3.1 describes the setup with the Starter Kit.  Section
3.3.2 describes the setup with the card edge connector.  Use the section which is
appropriate for the application.

3.3.1 With the Starter Kit

The Kloehn Starter Kit, P/N 23427, contains all the accessories needed to power
the V3 pump and control it using a PC.  The following items are included in the kit:

1. 24 Vdc Power Supply, P/N 17732, with power cables (Figure 3-3)
2. RS232 Communications cable, P/N 17734 (Figure 3-2)
3. Card Edge Adapter Board, P/N 23352 (Figure 3-1)
4. Disk with software and manual, P/N 
5. Installation instruction sheet

3.3.1.1 Card Edge Adapter Board

The Card Edge Adapter Board (Adapter P/N 23352), shown in Figure 3-1, converts
the card edge connector on the rear of the pump to a set of 0.1-inch connectors
compatible with the 50300 series pump accessories, including the power supply
cable and the communications cable.  Inset the card edge connector on the board
onto the card edge of the pump.  The .1-inch connectors should be located near the
center of the rear of the pump.

When inserting a wiring connector into an Adapter  board connector, ensure the
Polarizing Key is oriented toward the Locking Tab, as shown in Figure 3-5, and
the pins are properly aligned with the connector.

3.3.1.2 Communications Cable

The Communications Cable (com cable) has a DB-9 connector on one end and a
three-pin .1-inch connector on the other end, as shown in Figure 3-2.  Plug the 3-pin



P/N 23454 Rev. D, 09-02-04
17

connector into the adapter board connector labeled “232".  Note the polarization of
the locking tab on the 3-pin connector as shown in Figure 3-1. Plug the DB-9
connector into a serial port on the PC.

Figure 3-1     Card Edge Adapter Board P/N 23352

3.3.1.3 Power Cables

The 24 Vdc power supply, P/N 17732, is provided with two cables as shown in
Figure 3-3.  The 24 Vdc cable is integral to the supply and has a 4-pin connector
attached.  This cable connects to the pump via the Card Edge Adapter.  Plug the
4-pin connector into the Adapter board connector labeled “POWER”.  Observe the
locking tab polarization.

A  separate cable is provided to connect the power supply to an AC power source.
This cable has a power Switch, a 3-prong Wall Plug, and a 3-pin Power
Connector.  Plug the 3-pin Power Connector into the mating Receptacle in the
power supply, as in Figure 3-3.  Plug the Wall Plug into a wall power socket.

Note the Power  Indicator  Light on the power supply.  If it is not lighted, change
the position of the Switch on the AC power cable.  There will be a slight delay before
the Power Indicator lights.  When the indicator is lighted, the power supply is
delivering 24 Vdc power to the 4-pin connector.

Note: On the 4-pin DC Power connector, the two inner pins are identical  +Power
Input and the two outer pins are identical Ground pins.  The supply has sufficient
output to power two VersaPump 3 devices or one VersaPump 6.



P/N 23454 Rev. D, 09-02-04
18

Figure 3-2     PC Serial Communications Cable P/N 17734

Figure 3-3     24 Vdc Power Supply P/N 17732



P/N 23454 Rev. D, 09-02-04
19

Be certain the card edge connector is oriented with the power pins at the
bottom of the connector as shown in Figures 2-1 and 3-4.

3.3.2 Without the Starter Kit

If the Card Edge Adapter Board (Adapter P/N 23352) is not used, the card edge
connector, P/N 23277 or its equivalent is required.  The connector is a 36-pin card
edge connector having 0.156-inch pin centers.

Insert the card edge connector onto the card edge at the rear of the pump.  Note the
power pins are at the bottom edge of the connector, as indicated in Figures 2-1 and
3-4.

Figure 3-4 shows the connections for DC power and communications with a PC.
The PC serial port connects to the “RS232" pins.

The RS232 cable wiring is illustrated in Figure 3-5 for both DB-25 and DB-9
connectors.  For connecting more than one pump, see Sections 6.5 for
communications wiring and Section 9.2 for power distribution wiring.  Section 6.5
also illustrates the wiring for an RS485 bus.

Figure 3-4     Pump Connections With Card Edge Connector



P/N 23454 Rev. D, 09-02-04
20

Note pins 2 and 3 are reversed between the DB-9 and the DB-25.

3.4 SETTING the SWITCHES

3.4.1 Com Setup Switch

The four toggles are located on the Com Setup Switch shown in Figures 2-3 and
3-4  should all be set to the “On” position.

Figure 3-5     RS232 Communications Cable Wiring



P/N 23454 Rev. D, 09-02-04
21

3.4.2 Address Switch

The Address Switch, shown in Figure 3-4, set the device address number.  Using
a small screwdriver, set the switch to “1".

All communications with the pump begin with the address number.  The address
may be set with the Address Switch or by wiring on the Address pins of the card
edge connector.  The card edge wiring method permits a wire harness to set an
address when multiple pumps are used in an instrument.  See Section 2.2 for the
address wiring details.

3.5 SETTING UP  COMMUNICATIONS

The HyperTerminal© program supplied with Windows® can be used to verify
communications with the pump.  If a communications program has been supplied
by Kloehn Co., follow the setup directions supplied with the software.  Otherwise,
use the HyperTerminal program as described in this section.

3.5.1 Setting up HyperTerminal

HyperTerminal allows the monitoring of all pump responses to commands, without
the filtering done by the WinPump program.  The communications setup described
in this section assumes the default communications parameters of "DT" protocol
and "9600" baud.

The following procedure will locate and configure the HyperTerminal program.

(1) Click on the Start button in the Windows environment screen.

(2) Go to Program  --> Accessories  --> Communication –>HyperTerminal
and click on the HyperTerminal folder.

(3) When the HyperTerminal window opens, double-click on the Hypertrm.exe
icon

(4) At the name prompt, type "Kloehn" and click on OK.

. (5) Go to Connect Using, select Direct to COM1, and click on OK.  This will
select a serial port.  If you are using another serial port, then select the
appropriate "Direct to Com...".

(6) In the new window, make these entries:
(a) Bits Per Second 9600
(b) Data Bits 8
(c) Parity None
(d) Stop Bits 1
(e) Flow Control None

(7) When the preceding entries are made, click on OK.

(8) Go to the top line terminal menu and select File.



P/N 23454 Rev. D, 09-02-04
22

(9) Click on Properties.

(10) In the Properties window, click on the Settings tab.

(11) Click on the ASCII Setup button and place a check mark in the following
boxes:

T  Send line ends with line feeds
T  Echo typed characters locally
T  Append line feeds to incoming line ends
T  Wrap lines that exceed terminal width

(12) Click on OK and then again on the next OK.

(13) Go to the top line terminal menu and select File.

(14) Select Save As.

(15) Click on OK.

Steps 13 through 15 create an icon named "Kloehn" in the HyperTerminal 
Window.  This icon can be dragged onto the desktop and used for direct access to
a pre-set version of HyperTerminal.  Each time the terminal program is required in
the future, the preceding setup steps need not be performed again.  Just double-
click on the new "Kloehn" icon.

3.5.2 Checking the Connection

When HyperTerminal or some other communications program has been set up for
communications with the pump, verify the communications link is operational.

(1) Turn on power to the pump.

(2) After the pump has initialized, send the command: /1 <Enter>

(3) The pump should respond with “/0`”.  If this response is seen, proceed to the
next section.  If not, go to Section 6.6 for troubleshooting tips.

3.6 SENDING COMMANDS

3.6.1 General Command Structure

A command is an instruction to the pump to do one thing, such as move the syringe
or turn the valve.  Commands can combined, or concatenated” to form command
strings.  Command strings, also called programs, can perform complex tasks
consisting of many operations, including decision-making.

A command consists of ASCII characters and contain two parts:   the command
and its argument.  The command is a case-sensitive letter which represents a
specific type of action to perform.  The argument follows the command letter and
determines how the command will execute.  For example, the command “D1200"
tells the pump to dispense (“D”) 1200 steps.



P/N 23454 Rev. D, 09-02-04
23

Commands which make decisions have two arguments.  The first is a number which
works the same way as for other commands.  The second is a letter, which
determines what the outcome of the decision will be depending on the
circumstances.  For example, the command “i2F” checks input (“i”) #2 for a low
level.  If the level is low, the program goes to the label “F” (a label is a “place
marker” in a program).  Other two-argument commands will be explained as they
are listed in Section 4.

3.6.2 Command Addressing

All commands and command strings must begin with a device address.    The
device address determines which devices will respond to a particular command
string.  In this way, many devices can be connected together on a single
communications line without interfering with each other.  The character which
signifies an address is the forward slash, “/”.  When the slash is seen by a pump,
the pump reads the character  which  follows as an address to determine if that
pump should  accept  the command string.  The individual device address is set via
the Address Switch or by the Address pin wiring on the card edge connector.

For example, if the Address Switch is set to “3", a command string which begins
with “/3" will be accepted by the pump.  If the string were to begin with “/2", the
pump would ignore the string.

Pumps may be addressed individually or in groups.  The groups may be in pairs,
groups of four, or all pumps on a single communications line.  The details of pump
addressing are given in Sections 6.1 and 6.2.

3.6.3 Pump Replies

When the pump receives a command string, it checks the string for correctness and
sends a reply.  The reply always begins with “/0", which is the address of the PC or
controlling device.  At least one character follows immediately after the “/0".  This
character is the status byte.  The status byte informs the controller of the current
status of the communication and the pump.

There are two types of status: “ok” and “error”.  There is a unique letter assigned to
each type of error the pump can recognize.  For every error, the status letter may
be capitalized or small-case.  If the status byte is capitalized, the pump is busy
doing something.  If the status byte is lower-case, the pump is not busy, and is
ready for another command.  The “ok” status has two special characters to indicate
“busy” or “ready”: the accent mark “`” indicates “ready”, and the ampersand “@”
indicates “busy”.  A typical response is   “/0`” or “/0@”.   Both these responses
indicate the pump and command string are ok.

Most command strings cannot be accepted until the previous command string is
completed.  The exception to this rule is queries.  A query asks the pump to report
something, not to do something.  A query can be asked any time and will be
answered when it is received, even if the pump is busy.

The commands are given and explained in Section 4.  A command summary is
listed in Appendix A.   A complete listing and explanation of the status bytes is given
in Section 5 and is summarized in Appendix B.



P/N 23454 Rev. D, 09-02-04
24

The zero position MUST be set ABOVE the INITIALIZE position by at
least some small distance or errors will result.

3.6.4 Configuring the Pump

Before the pump can be used, it must be configured.  Configuring a pump
determines the way it will operate.  The operating configuration is set by
parameters  stored in non-volatile memory (NVM).    The NVM acts like a solid-
state disk drive.  The parameters determine such things as the type of valve, the
communications baud rate, and other operating characteristics.

The parameters are set by the configuration commands.  Each parameter is
represented by a letter which may be upper-case or lower-case.  The pump
recognizes a letter as a configuration command because the letter is preceded by
a tilde “~”.  Following the tilde and letter, a number sets the configuration.

For example, the configuration command “~V8" sets the valve type to 6-way
distribution.  The “~” denotes a configuration command.  The “V” denotes the valve
parameter, and the “8" sets the valve to a six-way distribution.  The valve parameter
is the only parameter which MUST be set before the pump can be used.

Look up the valve parameter which corresponds to the valve type to be mounted to
the pump.  The parameters are listed in Section 4.2.2.  Then send the command

/1~Vn  <Enter> (Substitute the number of the valve type in place of “n”.)
<Enter> means to press the Enter key on the keyboard.

3.6.5 Calibrating the Syringe

The syringe zero position must be calibrated prior to the f irst use of the syringe
whenever a new syringe, valve, or syringe washer is installed.  This is a simple
procedure using the buttons on the front panel.

(1) With the syringe and valve already mounted to the pump, press the lower of
the two front panel buttons, the INITIALIZE button.  This will cause the
syringe to move to a position a small distance below the top-of-stroke.  This
position is internally fixed and is sometimes called the soft limit.

(2) When the INITIALIZE move completes, the syringe motor power will be Off.
(Normally, when a move ends, the motor is left at half-power.)  Rotate the
Thumbwheel at the lower left corner to move the syringe piston upward until
it barely contacts the top of the syringe.  This will be the zero position, also
called Home.  In some applications, the position may be slightly below the
top-of-stroke position if a small air gap is desired.

(3) Press the upper button, the SET HOME button.  The syringe will move
downward to the INITIALIZE position and then return to the zero position.

When step (3) above executes, the location of the zero position is stored in NVM.
This value will remain even after power is removed from the pump.  The zero
position will be remembered by the pump whenever the pump is powered up.



P/N 23454 Rev. D, 09-02-04
25

Do NOT do the calibration procedure each time the pump is powered
up.  Do the procedure ONLY when the syringe, valve, or syringe washer is
changed.

3.6.6 Sending Some Commands

All the basic setup procedures are now complete.  This section introduces some
basic commands and illustrates the difference between individual commands and
command strings.  The notation <Enter> means to press the Enter key on the
keyboard.  The “R” at the end of each command means “Run the command now.”

(1) Enter the command: /1W4R <Enter>

This initializes the syringe just as the INITIALIZE button did on the front
panel.

(2) Enter the command: /1A6000R <Enter>

This causes the syringe to move to the position 6000 steps below the zero
position.  “A” means “go to the Absolute position”.  This will be half-way down
for a 12000-step model or all the way down for a 6000-step model.

(3) Enter the command: /1o3R <Enter>

The valve will move clockwise (viewed from the front) to port “C”.  The “o”
denotes a valve move and the “3" corresponds to port “C” (1=A, 2=B, etc.).

(4) Enter the command: /1D4000R <Enter>

The syringe will move 2/3 the distance to the zero position (syringe at 6000
moves upward by 4000 to position 2000).

The preceding sequence of single commands could have executed as a single
command string, as happens next.

Enter the command: /1W4A6000o3D4000R <Enter>

The same sequence of commands is executed as for the individual commands, but
without any delays and as if a single, more complex command had executed.  This
is an example of a command string.  Next, a query will be illustrated.

Enter the command: /1? <Enter> (Query the syringe position)

The reply should be: /0`2000 (the position is at 2000 absolute)

Since queries are executed when they are received, no Run command was needed.
This is true for all queries and configuration commands.  For other commands, the
command or command string will execute when the “R” command is sent, either at
the end of the string or as the next command sent.   For example,

/1A6000 <Enter> place the command in the pump
. /1R <Enter> now run the command



P/N 23454 Rev. D, 09-02-04
26

4.0 COMMAND SET

This section presents the commands supported in the VersaPump 3.  The f irst
column lists the command syntax. The values in parenthesis ( ) indicate the range
of values. The value in brackets [ ] is the factory default value.  The notation “@n”
signifies the argument may be an indirect variable.  Indirect variables are explained
in Sections 8.1.4 and 8.3.7.

The non-volatile memory is limited to 10,000 writes.  For this reason, use
configuration commands only when a specific operating configuration must be
changed.  A configuration setting is stored for the life of the pump or until changed.

4.1 SYRINGE COMMANDS

There are two syringe resolutions: 6000 steps and 12000 steps, depending on the
model of pump.

4.1.1 Positioning Commands

These commands cause the syringe to move to a commanded position along its
range of motion.  An absolute position is a specific point.  A relative position is a
distance offset from the current position.  Absolute vs relative positions are
illustrated in Figure 4-1.

It is highly recommended that the upper case form of the "An", "Bn", and "Cn"
commands be used so that busy status can be ascertained.  The lower case "an",
"bn", and "cn" do not reveal busy status upon query.

In each of the commands below, the "n" value is expressed in steps, where "0" is
at top-of-stroke (0 volume).

An Go to Absolute position "n", with the BUSY status bit set to "busy".
(n: 0...6000 steps or 0...12000 steps,  @n) [n/a]

an Go to absolute position "n", with the BUSY status bit set to "ready".
(n: 0...6000 steps or 0...12000 steps,  @n) [n/a]

Dn Dispense "n" steps from the current position, with the BUSY status bit set
to a "busy".  The dispense direction is upward, towards the valve.
(n: 0...6000 steps or 0...12000 steps,  @n) [n/a]

dn dispense "n" steps from the current position, with the BUSY status set to  l
"ready".  The dispense direction is upward, towards the valve.
(n: 0...6000 steps or 0...12000 steps,  @n) [n/a]

Pn Aspirate (“Pick up”) "n" steps from the current position, with the BUSY status
bit set to a logic "1".  The aspirate direction is downward, away from the
valve. (n: 0...6000 steps or 0...12000 steps,  @n) [n/a]

pn Aspirate (“pick  up”) "n" steps from the current position, with the BUSY
status bit cleared to a logic "0".  The aspirate direction is downward, away
from the valve. (n: 0...6000 steps or 0...12000 steps,  @n) [n/a]



P/N 23454 Rev. D, 09-02-04
27

All moves to Zero or to the full-stroke positions should use an Absolute
position command (e.g., “A0" or “A12000").

Use the capitalized version of the An, Pn, and Dn commands.  Lower-case
versions will not report a “busy” status if the pump is queried while moving.

Figure 4-1     Relative vs Absolute Positions

Referring to Figure 4-1, relative position is measured from the current position to the
target position.  Absolute position is measured always from zero position (top of
stroke).   In the figure above, a move from the upper position at 2150 absolute to
the lower position at 12000 absolute can be done with either a relative aspirate
(move downward) or an absolute (go to position) command as follows.

Absolute move: A12000 (final position measured from zero)

Relative move: P9850 (final position measured from 2150)

Both commands will result in the syringe moving to the position shown on the right.
In general, any move which goes to the zero or maximum (full-stroke) positions
should use an absolute positioning command (e.g, “A0" or  “A12000").  A move
which goes from one position to another position which is not at either end of the
stroke would use a relative positioning command (“Pn” or “Dn”), although an
absolution positioning command could also be used.



P/N 23454 Rev. D, 09-02-04
28

hn Do a  handshake dispense,  using User Input  #n and User Output  #n for
the handshake signals.  See Section 8.3.3 for details about programming a
handshake dispense application.
(n: 1...3,  @n) [n/a]

h-n Trigger a handshake dispense immediately, without an external input
stimulus.
(n: 1...3,  @n) [n/a]

The handshake dispense is a coordinated sequence between two pumps in which
one pump dispenses while the other pump aspirates.  When one pump completes
its dispense, the other pump begins its dispense.  By summing the outputs of the
two pumps, a continuous flow can be synthesized.

The coordination between the two pumps is done automatically by the pumps when
their inputs and outputs are connected as explained in Section 8.3.3.  The value of
“n” in the handshake dispense commands determines which of the user inputs will
be used for the handshake coordination.  For example, if the command is “h2", then
the pump will use input #2 and output #2.

As each pump nears the end of its dispense, it provides an advance trigger signal
to the other pump, which immediately begins its own dispense.  The timing on the
trigger signal is automatically adjusted to compensate for different acceleration
settings.

4.1.2 Motion Variables

The syringe axis uses the following variables to determine the speeds,
accelerations, and drive compensation moves.  See Section 8.2.3 for tips on setting
speed and acceleration values.

During  power up of the pump, default values in the operational memory are recalled
from the NVM.  The operational values can be set at any time a move is not in
progress.  Top Speed is an exception, as it can be set “on-the-fly”.

Except as noted, all these commands require a “R” (Run) command to execute
immediately.

Cn Set the Stop speed to "n" steps per second (sps).
(n: 40...8000, @n)  [650]

cn Set the Stop speed to "n" steps per second (sps).  
(n: 40...8000, @n)  [650]

Kn Set the number of syringe backlash steps to "n" steps. Backlash
compensates for mechanical slack in the drive system.  Too little backlash
compensation will result in an error in the initial dispense movement following
an aspirate move.
(n: 0...500, @n) [100]

Ln Set acceleration and deceleration slopes to "n", where the actual
acceleration value in steps per second per second = n x 2500 sps/sec.
(n: 1...20, @n) [7]



P/N 23454 Rev. D, 09-02-04
29

ln Set deceleration slope independently to "n", where the actual deceleration
value in steps per second per second = n x 2500 sps/sec.
(n: 1...20, @n) [7]

Example: L12 set the acceleration and deceleration parameters
both to “12"

l15 set only the deceleration parameter to “15"

Sn Set a predefined syringe speed.  The speeds in the table below are in steps
per second (sps). (n: 0...34, @n) [n/a]

Sn  sps Sn sps Sn sps Sn sps

0 6400   9 1800 18 190 27 100
1 5600     10 1600 19 180 28   90
2 5000     11 1400       20 170 29   80
3 4400     12 1200       21 160 30   70
4 3800     13 1000       22 150 31   60
5 3200     14   800       23 140 32   50
6 2600     15   600       24 130 33   40
7 2200     16   400       25 120 34   30
8 2000     17   200       26 110

Vn Set the syringe Top speed to "n" steps per second (sps).  The Top speed is
the rate at which dispenses and aspirates operate.  Top speed can be
changed "on-the-fly" during a syringe move.  For speeds above 1000 sps,
changes in speed which are too large may stall the syringe motor.  A “R”
command is not required for this instruction.
(n: 40...8000, @n) [3500]

vn Set the Start speed to "n" steps per second.
(n:  40...1000, @n) [650]

! Store the current values of Top speed, Start speed, Stop speed, and
Backlash as the default values to be used after each power-up or reset.  This
command may not be stored within a program.

For most applications, only the Acceleration and Top speed are adjusted.  The
remaining parameters are left at the default settings.  If the Top speed should be set
to a value lower than the Start speed, the pump will begin the move at the Top
Speed.  If the Top speed is set lower than the Stop Speed, the move will end at the
Top Speed.  For this reason, values of Top speed which are set lower than either
the Start Speed or the Stop Speed do not require any adjustment in Start speed or
Stop Speed.

4.1.3 Initialization

The syringe position must be initialized (calibrated) after each power-up, reset, or
syringe overload condition.  Until the syringe has been initialized, other  syringe
movement commands will not be accepted.  This is because the syringe position
cannot be absolutely known after the preceding conditions occur.  An initialization
command causes the syringe to go to the INITIALIZE  position.  This is the only



P/N 23454 Rev. D, 09-02-04
30

absolutely known location on the syringe stroke when position information is lost or
corrupted.   All other positions can be determined once this position is known.

Initialization may use one of three commands: Wn, Yn, or Zn.   Each  operates in
the same way except for  the definition of  the valve port positions used during
initialization.  For all initialization commands, the argument "n" denotes an initialize
move (n = 4) or a “set home” operation (n = 5).

The “W4” command always initializes the syringe using port “A”.  The “Y4” and “Z4”
commands initialize the syringe using the valve port which has been set by the
“~Yn” or “~Zn” commands, respectively.  This permits three different ports to be
used for syringe initialization.

The front  panel  INITIALIZE button executes only the “W4" command.  The SET
HOME button effectively executes all three “W5", “Y5", and “Z5" commands, as
there  is no practical difference between these three versions.

The initialize commands require a “R” command to execute immediately.

Wn Initialize the syringe.  This must be used on systems with no valve.
(n: 4 or 5) [n/a]

n=4 Move the syringe to the INITIALIZE position after moving the valve to
port A.

n=5 Set the current syringe position as the "Zero" position.  The result is
automatically stored in non-volatile memory (NVM).

Yn Initialize the syringe after moving the valve to the port corresponding to the
number stored for the "~Yn" configuration command.
(n: 4 or 5, refer to command "Wn" for explanations of "n" values) [1]

Zn Initialize the syringe after moving the valve to the port corresponding to the
number stored for the "~Zn" configuration command.
(n: 4 or 5, refer to command "Wn" for explanations of "n" values) [1]

~Yn Select the valve position which the valve will use while initializing the syringe.
This parameter value is used by the "Y4" command.  This command checks
the “~V” parameter to determine which port numbers are acceptable.
(n: 1...8) [1]

n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H

~Zn Select the valve position which the valve will use while initializing the syringe.
This parameter value is used by the "Z4" command.  This command checks
the “~V” parameter to determine which port numbers are acceptable. See the
“~Yn” command for the number-to-port letter translation.
(n: 1...8) [1]



P/N 23454 Rev. D, 09-02-04
31

4.1.4 Syringe Queries

? Query the syringe absolute position.

?1 Query the syringe Start speed (“vn” value) in equivalent steps per second.

?2 Query the syringe Top speed (“Vn” value) in equivalent steps per second.

?3 Query the syringe Stop speed (“cn” value) in equivalent steps per second.

?29 Query the contents of the syringe position snapshot  memory.

?30 Query the acceleration and deceleration numbers (“Ln” and “lm” values).
Two numbers are returned.  The first number is the acceleration number and
the second is the deceleration number.

?31 Query the number of syringe anti-backlash steps.

~Y Query the valve port number used by  the “Y4" syringe initialization. 

~Z Query the valve port number used by  the “Z4" syringe initialization. 

4.2 VALVE COMMANDS

The valve ports are not inherently directional.  The actual direction of fluid flow at
any port is determined by the relative motion of the syringe.  An aspiration draws
fluid into a port and a dispense ejects fluid from a port.

For  non-distribution valves,  some valve positions block the syringe port, preventing
fluid from entering or leaving the syringe.  The pump does not allow syringe moves
in those positions with such valves.

For each move command, the argument "n" determines both the destination port
and the direction of valve rotation  The default direction is clockwise.

4.2.1 Valve Type Setting

The VersaPump 3 uses a universal valve position encoder which can
accommodate different valve types.    The valve type is selected by sending the
valve configuration command  "~Vn".   The value of the parameter “n” is
automatically stored into the non-volatile memory (NVM) when command is
received.   Once stored,  it should not be set again unless the valve type is
changed.  The valve type is stored  even when power is removed from the pump.
The valve configuration command cannot be placed within a program.

~Vn Set the valve type.  [default = 0]
        (n: 0 = no valve

1 = 3 way non-distribution 2 = 3 way distribution
3 = 4 way non-distribution 4 = 4 way distribution
5 = undefined 6 = 5 way distribution
7 = 6 way non-distribution 8 = 6 way distribution) [n/a]



P/N 23454 Rev. D, 09-02-04
32

Due to automatic valve move retries after a valve motor stall, the time for a
valve move can vary significantly.  Do NOT use timing loops in controller
software to assume a valve move has completed.

4.2.2 Valve Position Commands

The valve position commands require a “R” (Run) command to be appended to
cause immediate execution.

B Move a three way standard valve to the "bypass" position (port A-to-port B).

I Move a three way standard valve to the "input" position (port A-to-syringe).

O Move a three way standard valve to "output" position (port B-to-syringe).

The preceding three commands are used with a 3-way non-distribution valve only.

on Move the valve to the position selected by "n".  This command is the
preferred command for all valve moves. The values of “n” must be consistent
with the configured valve type (see Configuration Commands).  Positive
numbers cause clockwise rotation as viewed from the front.  Negative
numbers cause counterclockwise rotation as viewed from the front.
(n: -8...8, not including 0, where 1= port A, 2 = port B, etc.,  @n) [n/a]

Example: /1o4R Move the valve on pump #1 (“/1") clockwise to
port 4  (port “D”), and do it now (“R”)

Example: /3o-2R Move the valve on pump #3 (“/3") counter-
clockwise to port 2 (port “B”) now

When a valve fails to turn the commanded amount,  a valve stall has occurred. 
The next valve move command will cause the valve to move to Port A (“1") before
moving to the commanded port if the destination port was other than “A”.   The
move to port A is a recalibration move.   See Section 5 for error messages.

When writing software to control the pump, do not assume a valve move will
complete in a certain time.   In the event of a motor stall and subsequent automatic
error  recovery  attempt,  the time required for the valve to complete a valve move
can increase substantially beyond the normal time for a move.  Instead, query the
pump status with a carriage return (hex 0D, decimal 13) character to determine if
the pump is busy or the move has finished.

Example: command /1<carriage return> Query the “busy” status

reply /0@ /0 = host address (fixed)
@   = status is ok and busy

Command /1 <carriage return> Query “busy” status again

Reply /0' ` = ok, not busy (done)



P/N 23454 Rev. D, 09-02-04
33

4.2.3 Valve Queries

Valve queries require no “R” command to execute.  They are executed immediately
after they are received by the pump.  These commands can not be embedded
within a program.

?8 Query the current valve position.  Return the ASCII numerical value.  (1= port
A, 2 = port B, etc.)

$ Query the number of valve stalls.  Send the result to the host as an ASCII
number.  The value of the returned number is the number of times a stall and
subsequent automatic error  recovery occurred.   "0" = no error.  If the third
attempt fails, a valve overload error is generated.

% Query the number of valve movements since the last power-up or Reset.
Return an  ASCII number.

~V Query the valve type setting.  Return the value of the "~Vn" parameter. (See
Section 4.2.1 for the values.)

4.3 I/O COMMANDS

4.3.1 Output Commands

These commands set a User Output logic level or send an output byte via the Serial
Expansion I/O port.  All these commands require a “R” command to execute
immediately.

sn Send a serial byte from the User Serial expansion Port, MSB first.  The value
of the ASCII number "n" is the base 10 representation of the value of a
binary byte.  For transmitted bytes, positive logic applies ("1" = high logic
level).  In the 2-byte serial mode, "n" represents the second byte sent.  The
first byte is the same as the first byte sent by a "sn,m" instruction.  See
Section 4.5 for an explanation of "@n" usage.
(n: 0...255, @n) [n/a]

Example: s85 Send the decimal number “85" in binary format.  The
serial I/O device will receive the binary number
01010101 (= 85 in decimal - base 10 - format).  A “1" is
a high logic level and a “0" is a low logic level.

sn,m Send two bytes from the User Serial expansion Port,  byte "m" first and then
byte "n" second.  Both bytes are sent MSB (most significant bit) first.  The
values of "n" and "m" are expressed as the ASCII base 10 representation of
the binary bytes.  
(n: 0...255,  m: 0...255, @n) [n/a]

Example: s85, 129 Send the decimal numbers 85 and 129 as binary
numbers.  The external serial I/O device will
receive the  binary numbers   01010101
10000001.  A “1" is a high logic level and a “0" is
a low logic level.



P/N 23454 Rev. D, 09-02-04
34

Example: s@10, 35 Send two numbers.  The first is the same first
number sent when this command was last used,
and the second number is “35" (00100011).  See
Section 4.5 for an explanation of "@n" usage. 

Un Turn the user parallel output "n" ON (low logic level) or turn on a serial I/O
port output bit.
(n: 1...3 = parallel outputs 1...3

11...18 = serial byte 1, bit 1...8 of the serial expansion port
21...28 = serial byte 2, bit 1...8 of the serial expansion port) [n/a]

Example: U2 Turn On (set to low logic level) user output #2

Example: U25 Turn On bit 5 in byte #2 of the serial expansion I/O

un Turn the user parallel output "n" OFF (open-circuited) or turn off a serial I/O
port output bit.
(n: 1...3 = parallel outputs 1...3

11...18 = serial byte 1, bit 1...8 of the serial expansion port
21...28 = serial byte 2, bit 1...8 of the serial expansion port) [n/a]

A special syntax is available for controlling the outputs while the pump is executing
other commands or a program.  This allows immediate, real-time control of the
outputs.  The syntax is a variation of the preceding output commands.  The syntax
is

U#n Turn ON (set low) an output immediately.

u#n Turn OFF (set high) an output immediately.

These commands use the same values for “n” as the Un and un commands.

4.3.2 Input Query Commands

Input query commands are sent from a host controller and request a status reply
from the pump.  These commands are executed when they are received by the
pump and do not require a “R” command.  These commands can not be embedded
in a program string.

?4 Query the "User Input 1" status.  Send the value to the host as an ASCII "1"
if "true" (low logic input level) or an ASCII "0" if  "false" (high logic input level).

Example:
command /5?4 Query User Input #1 status on pump #5

reply /0'1 /0 = host address (fixed assignment)
‘   = status is “not busy” and “no errors”
1  = input is “true” (low input logic level)

?5 Query the "User Input 2" status.  Send the value to the host (see "?4").

?6 Query the "User Input 3" status.  Send the value to the host (see "?4").



P/N 23454 Rev. D, 09-02-04
35

?7 Query the analog input value at the Digital Voltmeter input.  Send the value
to the host controller as an ASCII base 10 number.  Voltage = number x 0.02
volts.

Example:
command /1?7 Query Digital Voltmeter input on pump #1

reply /0'157 /0 = host address (fixed assignment)
‘   = status is “not busy” and “no errors”
157 = 157 x .02 = 3.14 Volts

?10 Query the value of the first  byte received from the Expansion I/O port input.
 An input byte is shifted in (MSB first), and the numerical value of the first
input  byte is reported in a base 10 ASCII format.   The value uses a negative
logic convention (low level = 1,  high level = 0).   In 1-byte mode, this is the
only byte.  In 2-byte mode, this is the first of two bytes.

Example: The inputs for the first byte are 11001001 (201 decimal)

sent /2?10 Query pump #2 Expansion input, byte #1

reply /0'201 /0 = host address (fixed assignment)
‘   = status is “not busy” and “no errors”
201 decimal = binary 11001001

?20 Query the value of the  second  byte received from the Expansion I/O port
input in 2-byte mode.  Two input bytes are shifted in (MSB first), and the
numerical value of the second input byte is reported in a base 10 ASCII
format.  The value uses a negative logic convention (low level = 1,  high level
= 0).  This instruction is not valid in 1-byte mode.  See “?10" above for an
example.

?n Query the state of the Expansion I/O port input bit designated by "n".  A
serial byte is input (MSB first), and the state of the designated bit is reported
as an ASCII "0" if the bit is "false" (high input logic level) or an ASCII "1" if
"true" (low input logic level).
(n: 11...18 bit 1...8 in Expansion input byte #1

21...28 bit 1...8 in Expansion input byte #2)

4.3.3 Input Test and Jump Commands

The value of an input can be checked and its status can be used to cause a
program to change the path of the instructions to be executed.  This is called a
conditional jump.  The general format is 

If the input is “true”, then jump to the place marked by the program label

These commands are used to control the way a program executes,  depending
upon the state of an input variable.  The commands are intended to be embedded
within a program string and not to be executed alone.  See Section 4.4.3 for more
information about program jumps and labels.



P/N 23454 Rev. D, 09-02-04
36

inp If the input level is true (low input level), jump to label "p".  This checks if a
user input pin on the card edge connector is at a low level.  There are three
user inputs.  If an I/O Expansion Board is used, the number of inputs
increases by 16, organized as two bytes of eight bits each.
(n: 1...3 User input number 1...3

11...18 bit 1...8 in Expansion input byte #1
21...28 bit 1...8 in Expansion input byte #2

 p: a...z, A...Z) [n/a]

Example: i18b Test bit #8 in Expansion byte #1.  If it is at a low level, begin
executing the instructions at program label “b”.  If it is not at a
low level, continue with the next instruction after this one.

i<np If the analog input (DVM) value is less than the number in the command,
jump to label “p”.  The input voltage range of 0 to 5V is converted into one of
255 levels.  The number “n” is the numerical value of the level.  This can be
found as n = 51 x input volts, truncated to an integer number.
(n: 0...255, @n p: a...z, A...Z)

Example: i<126s Test the Digital Voltmeter input, and if the
voltage is less than 2.48 V, then go to program
label “s”.  (126 = integer part of   51 x 2.48.)

i>np If the analog input (DVM) value is greater than the number in the command,
jump to label “p”.  The input voltage range of 0 to 5V is converted into one of
255 levels.  The number “n” is the numerical value of the level.  This can be
found as n = 51 x input volts, truncated to an integer number.
(n: 0...255, @n p: a...z, A...Z)

4.4 USER PROGRAM COMMANDS

Commands, command strings, and programs are executed in the pump RAM
(temporary) memory.  The pump can also store programs in non-volatile memory
(NVM).  The NVM acts like a solid-state disk drive.  See Section 7 for details on the
pump’s internal memory.

User program storage commands can load, save, run, or erase user programs in
the pump  memory.  Program execution commands are used to stop or start
programs.  Program  control commands determine the order of execution (flow) of
a program.

4.4.1 Program Storage

These commands control the storage, retrieval, and erasure of a user program in
the non-volatile user program memory (NVM).  These command execute when
received and can not be placed within a program.  A “R” command is not required.

En Store the current command string into non-volatile memory.  Maximum
program length is 170 characters.
(n: 1...10) [n/a]

en erase a stored command string in non-volatile memory.



P/N 23454 Rev. D, 09-02-04
37

(n: 1...10) [n/a]



P/N 23454 Rev. D, 09-02-04
38

The “T” command may cause the syringe to “loose steps” and generate a “Z”
error if the “T” command is used to stop the syringe motion at a high speed.

qn Return a copy of a program currently stored in the non-volatile program
memory (NVM).
(n: 1...10) [n/a]

?9 Query the number of unused bytes (characters) in non-volatile program
memory. (390 maximum)

?19 Query which program numbers are currently used to store a program.
Return a list of the numbers in use, separated by a space between numbers.

4.4.2 Program Execution

The non-volatile user-program memory and its "auto-start" capability are unique to
Kloehn pumps.  The external "Stop" input function is also an added feature on
Kloehn pumps.  Only the "H" command can be used within a program.  These
commands do not require a “R” command for immediate execution.

~An Enable or disable autostart for a program in NVM.  If “n” is not zero, begin
executing the numbered program when power is applied or after a reset.  
If autostart is disabled,  a stored program is started with the "r n" command.
(n:  0 = disable,  1...10 = enable,  @n)  [0]

~A Query the autostart state.  Return "0" if disabled, "1" if enabled.

H Halt the executing command string or program.  This is used to create
breakpoints in program execution.  The "H" command is for inclusion within
a program string and cannot be used as a command sent externally to  a
running program.   A program stopped by an "H" command within the
program may resume execution with the command following the "H"
command if a "R" command is subsequently sent.

r n run stored program #n in the non-volatile program memory.  (External
command)
(n: 1...10,  @n) [n/a]

jn Do stored program #n and then continue with the present program.
(n: 1...10, @n) [n/a]

R Run the command string in RAM.  If the command string has been stopped
by an "H" command, resume execution.

T Terminate execution of current command string.  An externally-sent
command only, it is executed when received.  A valve move in progress will
go to completion when a "T" is received.  If the “T” command is used while
the syringe is moving above about 2000 steps per second, the pump may
generate a “Z” error when it passes up through the INITIALIZE point.



P/N 23454 Rev. D, 09-02-04
39

4.4.3 Program Control

4.4.3.1 Jumps and Labels

A program jump provides a means to change the order of execution of program
commands.  The point from which a jump occurs is a jump command.  Program
execution  is changed from the location of the jump command to the destination
label ("p") specified in the jump command. 

A jump may be unconditional, which executes every time it is encountered, or it may
be conditional.   Conditional jumps are “if...then” commands.  The jump to a label
will occur only if the specific test condition in the command is true.    Remember
“Do if True”.   Jumps and labels are unique to Kloehn pumps.

:p Declare the program label  "p" (case sensitive).
(p: a...z, A...Z)

Jp Jump unconditionally to program label "p".  This is the only unconditional
jump command.
(p: a...z, A...Z)

fnp If the flag is set (=1), then clear it and jump to label “p”.  This is useful to
change  the way a program executes if the path has already been done once
before.  The program will jump the first time this instruction is encountered,
but not when it is encountered after the first time.  A flag is a bit which can
be set (turned “on”), cleared (turned “off”) or tested (if...then).  There are
eight flags, numbered 1 through 8.
(n: 1...8 p: a...z, A...Z)

f-np If the flag is clear (=0), jump to label “p”.
(n: 1...8 p: a...z, A...Z)

inp If the input level is true (low input level), jump to label "p".  This tests if a user
input pin on the card edge connector is at a high or a low level.  There are
three user inputs.  If an I/O Expansion Board is used, the number of inputs
increases by 16, organized as two bytes of eight bits each.
(n: 1...3 User input number

11...18 bit 1...8 in Expansion input byte #1
21...28 bit 1...8 in Expansion input byte #2

         p: a...z, A...Z)

i<np If the analog input (DVM) value is less than the number in the command,
jump to label “p”.  The input voltage range of 0 to 5V is converted into one of
255 levels.  The number “n” is the numerical value of the level.  This can be
found as n = 51 x input volts, truncated to an integer number.
(n: 0...255, p: a...z, A...Z)

i>np If the analog input (DVM) value is greater than the number in the command,
jump to label “p”.  The input voltage range of 0 to 5V is converted into one of
255 levels.  The number “n” is the numerical value of the level.  This can be
found as n = 51 x input volts, truncated to an integer number.
(n: 0...255, p: a...z, A...Z)



P/N 23454 Rev. D, 09-02-04
40

k<np If the software counter is less than "n", jump to label "p".    A software
counter is internal to the pump and can be set to a number, added to,
subtracted from, and tested.  It is useful for counting program events and for
the  temporary  storage  of internal variables such as syringe or valve
position.  See Section 4.9.1 for more information on software counters.

         (n:  0...65535,  @n p: a...z, A...Z)

k=np If the software counter is equal to "n", jump to label "p".
         (n:  0...65535,  @n p: a...z, A...Z)

k>np If the software counter is greater than "n", go to label "p".
         (n:  0...65535,  @n p: a...z, A...Z)

s<np If the Expansion I/O input byte has a value less than "n", jump to label "p".
This reads in the value of the first I/O Expansion input byte and compares
the numerical value of the byte against the number in the command.  

         (n:  0...255, p: a...z, A...Z)

s>np If the Expansion I/O input byte is greater than "n", go to label "p".
         (n:  0...255,  @n p: a...z, A...Z)

y<np If the syringe position is less than "n", jump to label "p".  This is useful in
loops which repeatedly aspirate or dispense until some  event occurs.  This
test can prevent  the error which occurs if a move is commanded beyond
zero or full-stroke.

         (n:  0...6000 or 0...12000,  @n p: a...z, A...Z)

y=np If the syringe position is equal to "n", jump to label "p".
         (n:  0...6000 or 0...12000,  @n p: a...z, A...Z)

y>np If the syringe position is greater than "n", go to label "p".
         (n:  0...6000 or 0...12000,  @n p: a...z, A...Z)

4.4.3.2 Repeat Loops

A program loop causes a group of commands to repeat.  A loop may be constructed
from a jump command and a label.  Such a loop will repeat indefinitely unless a
conditional jump is included within the loop to cause an exit from the loop.  The
repeat command offers a better way when the number of repeats is known.

The repeat command causes a group of instructions to repeat a specific number
of times.  The syntax is "g...Gn".  The "g" command marks the beginning of the
group of commands to be repeated, and the "Gn" command marks the end of the
group.  The value "n" denotes the number of times the loop is to be repeated.

g Mark the beginning of a group of commands to be repeated.

Gn Mark the end of a repeat string, to be repeated "n" times.
         (n: 0...30000) [n/a]

Example: go1P6000o3A0G10

g...G10 repeat the sequence of commands ten times



P/N 23454 Rev. D, 09-02-04
41

o1 set the valve to port “A” (1 = A)
P6000 aspirate 6000 steps
o3 move the valve to port “C” (3 = C)
A0 dispense all the contents of the syringe (go to zero)

“o1P6000o3A0", the command string between “g” and “G10", will be
repeated ten times.

4.4.3.3 Time Delays

A time delay is a pause in a program.  These are useful for timing events such as
generating pulses, very slow syringe moves, and event synchronization.

Mn Delay (pause) "n" milliseconds.  The "Mn" command will wait for "n"
milliseconds before moving to the next command.  1000 milliseconds = 1
second.
(n: 1...60000) [n/a]

4.5 VARIABLES

A variable is command argument (command value) which permits a command to
use a value which is determined at the time the command executes within a
program, rather than being set to a fixed value when the program is written.  This
permits more general programs to be written and stored.

There are two types of variables: general and indirect.  General variables are set by
the user and are declared before a program is run.   Indirect variables use values
obtained from hardware inputs or internal pump values.  All variables use the syntax
“@n”, where the @ symbol denotes a variable and the value of “n” denotes the
source of the variable.

4.5.1 General Variables

There are eight general variables, z1 through z8.  There are two forms of syntax
used with the general-purpose variables: one to use the variable in a command and
one to set the value of the variable.

4.5.1.1 Setting a General Variable

The value of a general variable is set with the syntax:

zn = m “z” denotes a general variable
“n” is the variable identification number
“m” is the value assigned to the variable

Example: z3=4500 The general variable is “z3" and the value 4500 is
assigned to it.  In the example of Section 4.5.1.2, the
dispense would be 4500 steps, given this declaration.



P/N 23454 Rev. D, 09-02-04
42

The value of a general variable may be declared at any time prior to the execution
of the program using the variable.  The value of the variable must be valid for the
command in which it is used.  If an invalid value is used, an error message results.

Example: z1=45z2=4500z5=12000r7 A typical run-time declaration for a
stored program

z1=45 Set general variable z1 = 45
z2=4500 Set general variable z2 = 4500
z5=12000 Set general variable z5 = 12000
r7 “r7" means to run the stored program #7 in the non-

volatile memory using these variable settings.

The "zn" command executes as soon as the pump recognizes the command.  The
"zn" command cannot, therefore, be stored as part of a program.  The values of all
"zn" commands are stored into RAM, and are lost if the power is removed from the
pump or if the pump is reset.  The default value of all zn variables is zero after a
reset.

4.5.1.2 Using a General Variable

The syntax for a general variable is:

@1n where The @ symbol denotes a variable.
The “1" denotes a general variable
The “n” denotes which general variable to use
(n: 1...8)

The general variables and their argument values are:

Argument Variable Argument Variable
   @11    z1    @15    z5
   @12    z2    @16    z6
   @13    z3    @17    z7
   @14    z4    @18    z8

Example: D@13 Dispense an amount equal to the value of the general
variable “z3".

4.5.2 Indirect Variables

Indirect variables are determined by the value of an input or by some internal
condition.  The variable syntax is “@n”, where “@” denotes a variable and “n”
denotes the source of its value.  The indirect variables are listed below.

@1 Numerical value of Expansion input byte #1, read as a two-digit packed BCD
number (0...99)

@2 Numerical value of Expansion input byte #2 #1, read as a two-digit packed
BCD number (0...99)

@3 Digital Voltmeter input (0...255)



P/N 23454 Rev. D, 09-02-04
43

@4 Digital Voltmeter input (two-digit BCD, normalized to 0...99.  Normally
used for external displays driven from the
Expansion port.)

@5 Current Software Counter value (0...65535)

@6 Current valve position (1...number of ports for valve type)

@7 Current syringe position (steps, normally used in other commands)

@8 Current syringe position (two-digit BCD, normalized to percent of full
stroke, 0...99.  Normally used for external
displays driven fro the Expansion port.)

@9 most recently-sent value of the byte #2 sent with the sn,m  command

@10 most recently-sent value of the byte #1 sent with the sn,m command

4.5.3 List of Commands Using Variables

The commands listed in this section may use variables.  The column labeled
“Scaled” indicates if the variable is scaled for use with a particular command.
Variables which are not scaled are used as the actual numeric value of a command
argument.  Variables which are scaled are used to compute a proportional amount
of the argument’s range.  The proportion is

argument value = (variable value / maximum variable) x maximum argument

Example: o@3 Not scaled.  Use the number as the value.  If the number were
“6", the command would be “o6".

Example: V@3 Scaled.  The value used for the command will be proportional
to the maximum value of the number.  In this case, if the value
of @3 were “127", the actual argument would be 3984.  This
is computed as follows:

Maximum V = 8000, maximum analog value (@3) = 255.

Value = (127 / 255) x 8000 (The value is to 8000 as
127 is to 255.)

In the preceding example, the DVM input accepts a dc voltage from  0 to 5 Volts
and converts this voltage to a parameter value.  A parameter value may be scaled.
Thus, if a potentiometer is used to input a voltage, the potentiometer dial could be
calibrated to read from 0 to 100 percent, and would then be applicable to any scaled
parameter.

A given variable is not restricted to use by one command nor to one instance of a
command.  However, the value of a variable must be compatible with all commands
which use it.  The following commands can use a variable in place of a fixed value
for “n”.  Variables can not be used for labels.



P/N 23454 Rev. D, 09-02-04
44

Instruction scaled
An, an move syringe to absolute position yes
cn set stopping speed yes
Dn, dn dispense, relative to current position yes
g...Gn repeat loop no
inp if serial input bit true,  jump to "p"   no
i>np if analog input > "n",  jump to "p" no
i<np if analog input < "n",  jump to "p" no
jn do program #n, then return no
Kn set number of backlash steps yes
kn set software counter = "n" no
k+n add "n" to software counter no
k-n subtract "n" from software counter no
k<np if counter < "n", then jump to "p" no
k=np if counter = "n", then jump to "p" no
k>np if counter > "n", then jump to "p" no
Ln set acceleration slope no
ln set deceleration slope no
Mn delay "n" milliseconds yes
on move valve to position "n" no
Pn, pn aspirate, relative to current position yes
Sn set top speed no
sn send SIO byte no
sn,m send SIO double byte no
s<np if serial input < "n", then jump to "p" yes
s>np if serial input > "n", then jump to "p" yes
Vn set top speed (steps/sec) yes
vn set start speed (steps/sec) yes
y<np if syringe position < “n”, jump to “p” no
y=np if syringe position = “n”, jump to “p” no
y>np if syringe position > “n”, jump to “p” no
~An set autostart program number no
~Bn set communications baud rate no

4.6 CONFIGURATION  COMMANDS

Configuration commands are used to determine the operating parameters of the
pump.  All configuration commands begin with a tilde, “~” and have two forms: the
set form and the query form.  The set form uses a numerical argument to set the
value of a parameter.  The query form is the command with no number attached.
The query form reports the present value of the parameter.

All configuration parameters are automatically saved into the non-volatile memory
(NVM) when they are set.  The settings will be remembered even without power for
the life of the pump or until they are changed.

Configuration commands execute when they are received and do not require a “R”
command.  They can not be used within a program.  Either upper or lower-case
letters may be used.

~An Select the program to auto-start when the power is turned on.  A selection
of "0" means no program is selected for an autostart.  If the value is not zero,
the number is the program number to be autostarted after power-up or



P/N 23454 Rev. D, 09-02-04
45

Reset.  If no parameter "n" is entered, the current value of "n" is returned.
(n:  0...10, @) [0]

~Bn Select the communications baud rate.  If no parameter “n” is entered, the
current value of "n" is returned.
(n: 0...7) [3]

n Baud rate n Baud rate
1   38,400 5    2,400
2   19,200 6    1,200
3    9,600 7      600
4    4,800 8      300

~Hn Set the SET HOME button  mode on the faceplate.  If no parameter “n” is
entered, the current value of "n" is returned.  This parameter determines if
the front panel SET HOME button is working or not working.  This is useful
for preventing users from resetting the Home position of the syringe.
(n: 0 = the button operation is enabled.

1 = the button operation is disabled.) [0]

~in Enable or disable  the valve power-up initialization mode.  If no parameter “n”
is entered, the current value of the parameter is returned.  When power is
first applied to a pump or immediately after a Reset, the valve normally
performs a move to home (port “A”).  In systems with several pumps, it may
be desired to inhibit this initialization move to prevent a large current demand
on the power supply due to all pumps moving at the same time.  If the power-
up move is inhibited, the first valve move command or the first syringe
initialize command will cause the valve to perform an initialization move as
the first part of the command.
(n: 0 = the move is enabled and will occur

1 = the move is inhibited and will not occur) [0]

~Ln Set User Input #3 operating mode.  If "n" is omitted, the current value of the
operating mode will be returned.  The default is 0.  Regardless of the
operating mode, the syringe position snapshot feature is active (See “?29"
in Section 4.7).

n Operating mode
0 Normal The input is a normal logic input
1 Limit A syringe dispense will stop when the input goes true

(low), and the input can still be read and tested like a
normal logic input.

~Pn Select the communication protocol.  If no parameter "n" is entered, the
current value of the parameter is returned.
(n: 1=DT, 2=OEM) [1]

~Sn Select the Expansion I/O mode.  This determines if one or two bytes will be
sent and received for each I/O operation.    If the I/O Expander Board is
used, the two-byte mode must be selected.   If no parameter "n" is entered,
the current value of the parameter is returned.  The factory default is 1-byte.
(n: 1=1-byte transfers, 2=2-byte transfers) [1]



P/N 23454 Rev. D, 09-02-04
46

The simplest form of status query is a Carriage Return (hex code 0D).  The
command “/address <carriage return >” returns only a single-character ASCII
status byte.  Example: /1<Cr>

~Vn Set the valve type.    If no "n" is entered, the current value of the parameter
is returned.  The factory default is “0" for units ordered without a valve drive.
(n: 0...10) [1]

 n Valve Type  n Valve Type
 0 no value
 1 3 way non-distribution valve  2 3 way distribution valve
 3 4 way non-distribution valve  4 4 way distribution valve
 5 undefined  6 5 way distribution valve
 7 undefined  8 6 way distribution valve

~Yn Select the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Y4" command.  The "~Vn" value is
checked for a valid entry before accepting the value of "n".  This permits a
port different from “A” to be used for the syringe initialization move.
(n: 1...8) [1]

n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H

~Zn Select the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Z4" command.  The "~Vn" value is checked
for a valid entry before accepting the value of "n".    This permits a port
different from “A” to be used for the syringe initialization move.
(n: 1...8) [1]

n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H

4.7 QUERY COMMANDS

Query commands are executed when they are received.    They return a value or
set of values to the query.  A query command can be sent at any time, even if the
pump is busy doing something else, and a reply will be sent.

All query commands are executed when they are received and can not be placed
within a program.  Query commands do not require a “R” command to execute
immediately.

Q Return the status byte. (See Section 5.0 for status replies.)



P/N 23454 Rev. D, 09-02-04
47

q List the command string stored into non-volatile user program memory.  This
is used to view programs stored in non-volatile memory.

x? Report the last error that was trapped by an error trap instruction.

? Query the syringe absolute position.  Return the value in steps from zero
position (top-of-stroke).

?1 Query the syringe Start speed (vn) in steps per second.

?2 Query the syringe Top speed (Vn) in steps per second.

?3 Query the syringe Stop speed (cn) in steps per second.

?4 Query the status of the User Input #1.  Return “1" (“true”) if low or “0" (“false”)
if high.

?5 Query the status of the User Input  #2.  Return “1" (“true”) if low or “0"
(“false”) if high.

?6 Query the status of the User Input  #3.  Return “1" (“true”) if low or “0"
(“false”) if high.

?7 Query the voltage at the Digital Voltmeter input.  Send the value to the host
controller as an ASCII base 10 number.  Voltage = number x 0.02 volts.

?8 Query the valve position.

?9 Query the number of unused bytes (characters) in non-volatile program
memory. (170 maximum)

?10 Query the first byte value of the Expansion I/O port input.   An input byte is
input (MSB first), and the numerical value of the input byte is reported in a
base 10 ASCII format.  The value uses a negative logic convention (low level
= 1,  high level = 0).   In 1-byte mode, this is the only byte.  In 2-byte mode,
this is the first of two bytes.

?19 Query which program numbers are currently used to store a program.
Return a list of the numbers in use, separated by a space between numbers.

?20 Query the numerical value of the  second byte of the Expansion I/O port
input in 2-byte mode.  Two input bytes are received (MSB first), and the
numerical value of the second input byte is reported in a base 10 ASCII
format.  The value uses a negative logic convention (low level = 1,  high level
= 0).  This instruction is not valid in 1-byte mode.

?29 Query the contents of the syringe position snapshot memory.  When the
User input #3 transitions from high to low, the current value of the syringe
position is stored in the snapshot memory.  The last two consecutive
snapshots are saved and reported.

?30 Query the acceleration and deceleration values.  Return the acceleration
value first and the deceleration value second.



P/N 23454 Rev. D, 09-02-04
48

?31 Query the number of syringe anti-backlash steps.

?n Query the state of the Expansion I/O port input bit designated by "n".  A
serial byte is input (MSB first), and the state of the designated bit is reported
as an ASCII "0" if the bit is "false" (high input logic level) or an ASCII "1" if
"true" (low input logic level).
n: 11...18 = serial byte 1, bit 1...8 of the serial expansion port

21...28 = serial byte 2, bit 1...8 of the serial expansion port

F Report the communications buffer status.
1 = command in buffer, 0 = buffer empty

& Report the firmware version as: <letter> <reference P/N> -<ID letter><rev>
(i.e., P50120 -R5)

$ Query the number of valve stalls.  Send the result to the host as an ASCII
number.  The value of the returned number is the number of times a stall and
subsequent automatic error  recovery occurred.   "0" = no error.  If the third
attempt fails, a valve overload error is generated.

% Report the number of valve movements since the last power-up or Reset.

* Report the supply voltage in decimal volts, rounded to the nearest 1/10 volt.
The value is averaged over not less than 8 readings.

~A Query the NVM user program autostart state.  Return "0" if disabled.   If
enabled, report the program number to autostart.

~B Query the communications baud rate.  Return the baud number “n”.
n Baud rate n Baud rate
1   38,400 5    2,400
2   19,200 6    1,200
3    9,600 7      600
4    4,800 8      300

~H Query the operating mode of the front panel SET HOME button.
n: 0 = The button operation is enabled

1 = The button operation is disabled

~i Query the mode of the power-up (post Reset) valve initialize move.
n: 0 = The move is enabled and will occur

1 = The move is inhibited and will not occur

~L Query the User Input #3 operating mode.
n Operating mode
0 Normal The input is a normal logic input (see Section 4.6)
1 Limit A syringe dispense will stop when the input goes true

(low), and the input can be read and tested like a
normal logic input.

~P Query the communications protocol.  Communications protocols are
explained in Section 6.3.  The default is the DT protocol.
n: 1 = DT (data terminal)

2 = OEM



P/N 23454 Rev. D, 09-02-04
49

~S Query the Expansion I/O operating mode.
n: 1 = 1-byte transfers

2 = 2-byte transfers

~V Query the valve type setting.
        n Valve Type n Valve Type

0 no valve
1 3 way non-distribution valve 2 3 way distribution valve
3 4 way non-distribution valve 4 4 way distribution valve
5 undefined 6 5 way distribution valve
7 undefined 8 6 way distribution valve

~Y Query the valve port to be used by the Yn initialization command.
n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H

~Z Query the valve port to be used by the Yn initialization command.   See
“~Yn” above for the returned values.

4.8 ERROR TRAPPING COMMANDS

Errors may occur during pump operation, in the structure of a user program, during
communications, or in the way a command is given.  The pump recognizes these
errors.  Normally, an error causes a program or instruction to halt and generates an
error  message to be reported in reply to the next received command.   This 
normal response to an error can be redefined by a user program using a trap.

A trap is an instruction which directs the pump to go to a label in a program if a
particular error should occur.   The commands following the label then determine
what actions will be taken as a result of the error.  An exit command marks the end
of the error-handling command string (the “handler”) and determines what will
happen next.

A user error handler is thus made from three parts: the label which marks the
beginning of the handler, the commands which are the body of the handler, and the
exit command which marks the end of the handler.

4.8.1 Trap Declarations

A trap instruction takes effect when it is declared in the program.  It remains in effect
as written unless it is changed afterwards.  Thus error traps can be re-defined “on-
the-fly” in a program.  The syntax for an error trap is

xnp where “x” denotes an exception (trap) instruction
“n” denotes the error number to be trapped
“p” denotes the program label which starts the error      
handler routine



P/N 23454 Rev. D, 09-02-04
50

Traps can provide graceful recovery or controlled exits from occasional error
conditions.  A trap can NOT fix system problems or overcome serious
mechanical difficulties.

If the exit type “4" is used, some means must be used  to prevent an “endless
loop”:          error -> handler -> error -> handler...

If error #n should occur after a trap for error #n is set, the program will jump to the
label “p”.  By declaring the same trap with a different label, different error handling
routines can be used for the same type of error in different parts of a program.

A trap will operate any number of times if the error occurs externally to the error
handling routine.  If the error recurs while executing the error handler (before the
error handler exit), the program will terminate with a standard error exit.  In general,
if an error persists in recurring, it can not be solved with a trap.  The trap exists to
deal with occasional errors, but cannot fix system errors external to the pump or
serious pump mechanical failures.

4.8.2 Trap Exits

The last instruction of an error handler (exception program) MUST be a trap exit
command.  Trap exit commands mark the end of an error handler and specify what
action the program is to take when exiting the error handler.

The general syntax is 

tn where “t” denotes a trap routine exit
“n” specifies the action to be taken after exiting

(n: 1 = Return program execution to the instruction following the instruction
       which caused the error
2 = Restart the program from the beginning
3 = Perform a normal error exit with an error message
4 = Retry the instruction which caused the error) [n/a]

4.8.3 Error Trap Query

The pump may be queried at any time to report the last error encountered by a trap.
The syntax is

x? Report the last error that was trapped.

This command executes when received and does not require a “R” command.  This
command can not be placed within a program.



P/N 23454 Rev. D, 09-02-04
51

4.9 MISCELLANEOUS  COMMANDS

4.9.1 Software Counters

The pump contains eight software counters.  A software counter is a register in the
RAM which can hold a number and with which simple arithmetic and tests can be
done.  These counters are useful for holding numbers for other uses, for counting
program cycles, for tracking external events, or for offsetting numbers input
externally.

The counters are organized as one active and eight exchangeable memory
locations.  All operations are performed on the active counter.  To use one of the
other counter memories, that memory must be exchanged with the active counter.
The value of the active counter will then be placed in the memory location and the
contents of the memory will be placed into the active counter.

The symbol for the counters is “k”.  The counter instructions require a “R” command
to execute immediately.  The test-and-jump instructions must be used within a
program.

k Query the current value of the active counter

kn Set the active counter equal to the number “n”

k+n Add the number “n” to the active counter

k-n Subtract the number “n” from the active counter

k^n Exchange the contents of counter memory “n” with the active counter.

k<np If the active software counter is less than "n", jump to label "p".    A software
counter is internal to the pump and can be set to a number, added to,
subtracted from, and tested.  It is useful for counting program events and for
the  temporary  storage  of internal variables such as syringe or valve
position.  See Section 4.9.1 for more information on software counters.

         (n:  0...65535,  @n p: a...z, A...Z)

k=np If the active software counter is equal to "n", jump to label "p".
         (n:  0...65535,  @n p: a...z, A...Z)

k>np If the active software counter is greater than "n", go to label "p".
         (n:  0...65535,  @n p: a...z, A...Z)

Example: memory 1 (#1) = 13,  memory 3 (#3) = 45, active counter (ac) = 122
Increment #3.

k^3 #1 = 13,   #3 = 122,   ac = 45
k+1 #1 = 13,   #3 = 122,   ac = 46
k^3 #1 = 13,   #3 = 46,     ac = 122

Example: Count cycles and jump when a limit is reached.
k+1 Increment the active counter
k>250A if the count exceeds 250, jump to program label “A”



P/N 23454 Rev. D, 09-02-04
52

4.9.2 Flags

Flags are software switches which can be set (“turned on”), cleared (“turned off”),
and tested.   Flags are used to indicate the status of something or to change the
way something is done after the first time.

There are six general-purpose flags (f1...f6) and three special-purpose flags (f7...f9).
The flag instructions require a “R” command to execute immediately.  The test-and-
jump instructions must be used within a program.

fn+ set  flag “n”
(n: 1...9) [n/a]

fn- clear flag “n”
(n: 1...9) [n/a]

fn? query the status of flag “n”.  Return a “0" is cleared or a “1" if set.
(n: 1...9) [n/a]

fnp test the status of flag “n”.  If it is set, then clear it and jump to program label
“p”.  This is useful for altering the way something is done the first time this
instruction is encountered.  The first time will see the flag set and subsequent
times will see it cleared.
(n: 1...8) [n/a]

fn-p test the status of flag “n”.  If it is clear, then jump to program label “p”.  This
is useful for altering the way something is done after the first time it is
encountered.
(n: 1...8) [n/a]

4.9.3 SET HOME Button Control

The SET HOME button on the front panel can be inhibited, thus preventing it from
being inadvertently activated by a user.  There are two ways this can be done, one
of which is a long-term control and one of which is intended to be dynamically set
“on-the-fly”.

When the button is enabled, pressing the button will perform the “W5" command
function, which sets the current syringe position as the “zero”, or top-of-stroke
position and stores the result into non-volatile memory.  This is an operation which
should be done only when the valve, syringe, or washer has been changed or when
the top-of-stroke position needs to be changed.

When the button is disabled, pressing the button has no effect.  The two means of
controlling the activation of the SET HOME button are:

~Hn Set the SET HOME button  mode.  If no parameter “n” is entered, the current
value of "n" is returned.  Use this as a long-term enable or inhibit.  The
number times the SET HOME function can be done is limited to 10,000.
(n: 0 = the button operation is enabled.

1 = the button operation is disabled.) [0]



P/N 23454 Rev. D, 09-02-04
53

f9+ Inhibit the SET HOME button operation.  This command operates in RAM
(temporary memory) and is effective as long as power is applied.  Use this
command to inhibit button operation “on-the-f ly”.

f9- Enable the SET HOME button operation.  This command operates in RAM
(temporary memory) and is effective as long as power is applied.  Use this
command to enable button operation “on-the-fly”.

f9? Query the status of the button flag “f9".  Report “1" is disabled or “0" if
enabled.

The ~Hn and f9 flag interact.  If the ~H is set to inhibit, the button will be inhibited
regardless of the state of the f9 flag.  On useful application of the flags is to set f9
when the system initializes and clear it only when a technician enters an access
code into a controller or activates a User Input to service the pump.

4.9.4 External Syringe Motion Limit Input

For applications in which a dispense  must be terminated by some external event
or condition, the User Input #3 can be configured as an external limit input.  Such
situations may include dispensing to a fixed level, dispensing to a PH, or creating
an external safety stop button.

The normal operating mode for User Input #3 is a logic input.  The "~Ln"  pump
configuration command (see Section 4.6) can be used to set input #3 into the "limit"
mode.  In the limit mode, a true (low) input will halt a syringe move in the dispense
direction, but has no effect in the aspirate direction.  The behavior of the external
limit input can be modified by the action of either flag #7 or flag #8.  The syntax for
flags is given in section 4.9.2.

Once stopped,  the syringe cannot be moved further in the dispense direction
unless the Limit input changes to an "off" (high) condition or unless the flag #7 is
set.  Moves in the aspirate direction can still be made at any time.   If flag #7 is set,
then a dispense may be initiated against an active limit input.  When the move has
begun, the flag is automatically cleared so that the next limit input transition from
high-to-low will cause the syringe to stop again.   This is useful in applications where
successive dispenses are to be made under the control of an external signal, such
as filling containers using a fill-until-signal.

For some applications, it is desired to stop a dispense after the second high-to-low
limit input transition.  This is accomplished by setting flag #8.  Such a limit action is
useful for titrations where the transition is measured optically and a pair of pulses
is generated through the transition region.    If this feature is used in conjunction
with the "snapshot" feature, fully automatic titrations can be done.

Even in the "Limit" mode, the User Input #3 can still be used for the normal logic
functions of reporting Input #3 status to a host and for "test-and-branch" decisions
within a program.



P/N 23454 Rev. D, 09-02-04
54

4.9.5 Motor Power Control

The syringe and valve motors can be turned “on” and “off” individually.  The syringe
motor normally idles at half-power to conserve energy and reduce idle motor
heating.  The syringe motor automatically goes to full power at the beginning of a
move and returns to half-power after the move completes.

The valve motor is normally off.  The valve motor automatically turns “on” at the
beginning of a valve move and turns “off” at the end of a valve move.  There are no
rotary forces acting on a valve and the combination of the internal friction in a valve
and the motor detent torque are sufficient to hold the valve in place between moves.

The individual motor powers can be controlled by the command

mn where “n” denotes the motor and action to take.
n: 0 = turn off the syringe motor

1 = turn on the syringe motor
2 = turn off the valve motor
3 = turn on the valve motor

When a move takes place in either the syringe or valve motor, the normal motor
power operation for the move overrides the current state of the “mn” command.

Example:
m0 turn off the syringe motor (motor is off)
A1200 send the syringe to position “1200" (motor is on during

and after move)

4.9.6 Repeat Command String

An entire command string can be repeated in its entirety by sending the string
repeat command.  The syntax is:

X Repeat the last command string

This command can be used repeatedly and will repeat the same command string
each time.  This command does not work for queries and configuration commands.

Example:

o2A12000o-1A0R Move the valve to port B, fill the syringe, move
the valve to port A, empty the syringe.

X Do all of the above commands again in the same
way.

X Do all the commands listed above again.



P/N 23454 Rev. D, 09-02-04
55

5.0  STATUS  &  ERROR  MESSAGES

A status byte is returned after about 12 milliseconds following receipt of the carriage
return in each command string sent to the unit.    Every pump reply contains a
status byte immediately following the host address “/0".

Example: /0@125 /0 host address (fixed)
@ status byte (ok, busy)
125 a value returned in response to a query

5.1 STATUS SUMMARY

Each status byte has two forms: busy and ready.  "Busy" means the device is
executing a command or program.  "Ready" indicates the device is  ready to receive
another command.  The status messages are:

    ASCII    Error     Decimal        Binary   Status
busy  ready  #    busy    ready 76543210
@  '  0 64   96 01X00000 no error
A  a  1 65   97 01X00001 syringe failed to initialize
B  b  2 66   98 01X00010 invalid command
C  c  3 67   99 01X00011 invalid argument

D  d  4 68 100 01X00100 communication error
E  e  5 69 101 01X00101 invalid “R” command
F  f  6 70 102 01X00110 supply voltage too low
G  g  7 71 103 01X00111 device not initialized

H  h  8 72 104 01X01000 program in progress
I  i  9 73 105 01X01001 syringe overload
J  j 10 74 106 01X01010 valve overload
K  k 11 75 107 01X01011 syringe move not allowed

L  l 12 76 108 01X01100 cannot move against limit
O  o 15 79 111 01X01111 command buffer overflow
P  p 16 80 112 01X10000 use for 3-way valve only
Q  p 17 81 113 01X10001 loops nested too deep

R  r 18 82 114 01X10010 program label not found
S  s 19 83 115 01X10011 end of program not found
T  t 20 84 116 01X10100 out of program space
U  u 21 85 117 01X10101 HOME not set

V  v 22 86 118 01X10110 too many program calls
W  w 23 87 119 01X10111 program not found
X  x 24 88 120 01X11000 valve position error
Y  y 25 89 121 01X11001 syringe position corrupted
Z  z 26 90 122 01X11010 syringe may go past home

Bit 5 of the status byte, denoted by "X" above, is set to "0" if the pump is busy, and
is set to a "1" if the pump is not busy.  The Error # is the number used by the error
trapping command.



P/N 23454 Rev. D, 09-02-04
56

5.2 DETAILED EXPLANATIONS

@, ` The device is operating normally.  No error condition has been detected.

A, a An attempt to initialize the syringe has failed.  No syringe move command
other than an initialize command will be valid until initialization is complete.
This error is usually the result of a syringe overload.  Check the fluid paths
for restrictions or obstructions.  Check the valve ports for alignment.  If a
reduced speed succeeds, try a shorter fluid path or larger diameter fluid path.

B, b A command just sent was not recognized as valid.  A  character was sent
that is not part of the command set.  A typing error may have occurred.   For
example, "N1000" is not valid because "N" is not a legal command.

C, c The number sent with a command is not valid.  The command itself was
valid, but the value sent with it was out of the allowed range of values for that
command.  For example, "A25000" has a value, "25000", which is not within
the range of available values.  This most frequently occurs when a series of
relative dispenses is commanded, and the last dispense command exceeds
the volume remaining.

D, d The  checksum  or sequence  number was incorrect (OEM protocol only).
The message should be retransmitted with a new sequence number. The
sequence number is adjusted each time a command is repeated to prevent
a repeated command from being executed more than once.  See Section
6.6.3 for the checksum and sequence number definitions.

E, e A “R” (Run) command was sent with a command which does not require it.

F, f The device supply voltage was too low.  The condition may be caused by a
low power supply  voltage or by voltage transients on the power supply wiring
near the pump.

G, g A move command was sent while the device was in an uninitialized state.
The  device must be initialized before a move command will be accepted.
An initialized state results after a power-up, a reset, or a syringe overload
error.

H, h A program or command is executing.  A new command (other than queries,
“Vn” and “T”) cannot be sent until the present command completes.

I, i The  load on the syringe drive axis was too great.   The syringe motor stalled.
A stall does no damage to the drive system.  There are several possibilities:
(1) A fluid path was constricted or blocked.  Check for kinks in tubing,

valve washers which may have a shrunken hole, other valves sticking,
and other sources of constriction.

(2) The syringe velocity was too high.  Back pressure increases with the
square of velocity.  Available thrust force also decreases with velocity.
Reduce the syringe top speed ("Vn" or "Sn").

(3) The acceleration is too high.  High acceleration places a power
demand upon the syringe motor in addition to the friction and fluid
back pressure demands.  Decrease the acceleration value ("Ln").

(4) The flow path inside diameter is too small for the fluid flow rate.  A
larger diameter, shorter path, or lower velocity  may be required.  The



P/N 23454 Rev. D, 09-02-04
57

back  pressure varies as nearly the fourth power of the diameter of
the path and directly with the length

J, j The valve motor failed to complete a commanded  move.  Some possibilities
are:
(1) The valve is wearing out and needs replacement.
(2) There is particle contamination in the valve.  Particles may come from

another place and be transported into the valve or may result from
crystal deposits in the valve.

(3) The chemistry results in swelling or softening of the valve materials,
resulting in binding.  Check chemical compatibility.

(4) The fluid or operating  environment is too hot, resulting in swelling and
binding of the valve.

(5) There is a misalignment of the valve drive and the valve stem.  This
typically results in binding at one point in the valve rotation.

(6) A fitting is screwed in too tight, distorting the valve and causing
binding.

K, k A syringe move command was not allowed because the valve is in a bypass
position (syringe port blocked), or because the supply voltage was too low.

L, l The User Input #3 limit input is active.  The syringe cannot dispense against
an active limit input.

O, o A command was sent while another was executing.  The last command
which was sent was not executed and was discarded.

P, p An instruction was sent which applies only to a three-way non-distribution
valve only (O, I, B) with the valve type set to other than a three-way non-
distribution.

Q, q There are too many loops within loops in the program.

R, r A program label called by a jump instruction was not found in the program.
Remember that the labels are case-sensitive.  A label may have been
changed or deleted when editing a program.

S, s A program stored in the non-volatile memory (NVM) does not have the
required end-of-program indicator.  The NVM may have been corrupted.  Try
saving the program again into NVM.

T, t There is not enough program memory to hold the entire program.

U, u The HOME (zero) position has not been set.  The syringe axis requires
calibration.  See Sections 3.2 and  4.1.3.

V, v A called program has called another program.  Only one program can be
called at the same time.

W, w The program called or commanded to execute cannot be found in memory.

X, x The valve position is not valid.  This error occurs when the valve position
code wheel sensor fails to see a slot after all valve motion has ceased.



P/N 23454 Rev. D, 09-02-04
58

Some possible causes are:
(1) The valve failed to complete the preceding move.
(2) The valve position has been displaced since the last move completed.
(3) Contamination has blocked one slot in the valve opto disk or a valve

sensor face is contaminated.

Y, y The current computed syringe location is in error.  The position value is
outside the range of acceptable values.  The syringe position memory has
likely been corrupted.

Z, z The syringe may try to go upwards past the Home (zero) position.  This
message is generated whenever a check of the computed syringe position
exhibits an out-of-tolerance error.  Syringe “crashes” are avoided by this
means.

When the syringe position is calibrated, the distance from the INITIALIZE
position to the top-of-stroke (zero) is stored into NVM.  Each time the syringe
passes up through the INITIALIZE point, the computed position is compared
to the stored value.  If  the two values do not match within a given error band,
the syringe is stopped and the error message is generated.

The two most common sources of this error are (1) having the Home position
set at the INITIALIZE point and (2), having “lost” (not counted) steps during
a move.  Steps can be lost when the “T” command is used to stop a syringe
which is moving at speeds above about 2000 steps pers second or when a
syringe overload occurs.



P/N 23454 Rev. D, 09-02-04
59

6.0 COMMUNICATIONS

Up to 15 devices may be operated on the same RS485 communications bus. 
Pumps may be addressed individually, in pairs, in groups of four, or all at once.  A
response from a device will only occur for individual addressing.  In the multiple-
device addressing modes, no device will provide a status response.  Status
messages are saved until an individual device is addressed.

6.1 INDIVIDUAL DEVICE ADDRESSING

In the table below, the Switch Setting column is the number to which the Address
Switch is set on the pump.  The ASCII Char column refers to the ASCII character
(also the keyboard character) corresponding to the address switch setting.  Devices
addressed in this mode will respond with a status byte and an answer to a query.

Switch Hex ASCII          Switch Hex ASCII
Setting Address Char           Setting Address Char

0 Reserved for controller 8 38 8
1 31 1 9 39 9
2 32 2 A 3A :
3 33 3 B 3B ;
4 34 4 C 3C <
5 35 5 D 3D =
6 36 6 E 3E >
7 37 7 F 3F ?

6.2 MULTIPLE DEVICE ADDRESSING

Multiple pump addressing sends a command string to more than one pump on the
communications bus at the same time.   To prevent bus conflicts, the pumps will not
provide a response to a command in one of these multiple-pump addressing
modes.

6.2.1 Dual Device Mode

In the dual device addressing mode, a group of two pumps is addressed.  In this
mode, individual devices do not provide status responses to commands.

Pump group 1, 2     3, 4       5, 6       7, 8       9, A       B, C      D, E
Hex address    41           43           45          47           49           4B          4D
ASCII character   A             C            E            G             I             K             M

6.2.2 Quad Device Mode

In the quad device addressing mode, a group of four pumps is addressed.  In this
mode, individual devices do not provide status responses to commands.

Pump group 1, 2, 3, 4           5, 6, 7, 8           9, A, B, C           D, E, F
Hex address           51                     55                     59                     5D
ASCII character      Q                       U                      Y                        ]



P/N 23454 Rev. D, 09-02-04
60

6.2.3 Global Mode

In the global device addressing mode, all devices on the bus are simultaneously
addressed.  In this mode, individual devices do not provide status responses to
commands.  The address character is the underscore, "_", hexadecimal 5F.

6.3 COMMUNICATIONS PROTOCOLS

The communications software protocols are the command and response formats
used send commands and receive responses from pumps.  There are two
protocols:  DT (data terminal) and OEM (original equipment manufacturer).  Both
software protocols use the same hardware protocol stated in Section 11.6.  The
status responses to commands should be monitored by the user's controlling
software to ensure overall system operational integrity.

The DT protocol is a simple data terminal protocol which is compatible with nearly
all terminal emulation programs and basic communications drivers.  This is the
preferred protocol in most situations.

The OEM protocol provides explicit error checking and a repeated-command
sequencing algorithm.  These features are not implemented in any standard
terminal programs.   Kloehn offers software which can communicate using this
protocol.  The KSerial driver can be called from within a user program and handles
the communications overhead.

6.3.1 DT Command Protocol

This section describes the command package of the DT protocol.  A command
packet is a sequence of bytes sent by a host computer from the host to a device.
The packet consists of a starting character, a device address, a command or
command sequence, and an ending character.

Byte # Description ASCII Hex
1 Start Character     /  2F
2 Address Character (see Sections 6.1 and 6.2)
3 to N Command Characters (see Section 4)
N+1 End (Carriage Return)  <CR>  0D

Explanation of bytes:

Byte 1: The starting character signals the beginning of a new packet.  It is the
front slash character "/" on the computer keyboard, 2F hex.

Byte 2: The device address is a address number for a device or for a group
of devices.  It can address a total of 15 devices in the network mode.

Byte 3: The command or a sequence of commands starts with byte 3.   A
command or a command sequence with length n bytes, uses from
byte 3 to byte 3+n-1.

Byte 3+n: The ending character indicates the end of a packet.  It is  0D hex, the
carriage return on the keyboard. 



P/N 23454 Rev. D, 09-02-04
61

6.3.2 DT Response Protocol

This section describes the device response packet format of the DT protocol.  The
device response packet is a sequence of bytes sent by a device from that device
to a host computer after receiving a command package.  The format of the packet
is described as follows: 

Byte # Description ASCII Hex
1 Start Character   /  2F
2 Controller Address   0  30
3 Status Byte (See Section 5)
4 to N Response (if required) (See Section 4)
N+1 End of Text <ETX>  03
N+2 Carriage Return <CR>   0D
N+3 Line Feed <LF>   0A
N+4 End (Blank) <Blank>  FF

Explanation of bytes:

Byte 1: The starting character, 2F hex, which signals the beginning of a new
packet, is the front slash character "/" on a computer keyboard,.

Byte 2: The host address, 30 hex (ASCII 0), is the address number for the
host computer.

Byte 3: The status and error byte describes the device status.  Refer to
Appendix C for the definitions of the status and errors.

Byte 4: There may or may not be response byte(s) for a command.  In
general, all query commands, "read an input value" commands, and
configuration query commands (~A, ~B, ~P, ~V, etc) cause response
bytes.  Other commands do not cause a response.  

Byte 4+n: The end-of-response mark is 03 hex.

Byte 4+n+1: Carriage return is 0D hex.

Byte 4+n+2: End of packet character is the line feed character, 0A hex.

Byte 4+n+3: The extra ending character, FF hex, is an extra character to ensure
the packet is properly sent.  This character might not be displayed by
the host terminal.

6.3.3 OEM Command Protocol

This section describes the command packet format of the OEM protocol.  The OEM
command format is identical to the Cavro OEM protocol.  The command packet is
used to send commands from the controlling host device to the syringe drive.
Explicit synchronization and error checking are key aspects of this protocol.

Byte # Description ASCII Hex
1 Line synchronization character <blank> FF
2 Start Transmit character <STX> 02



P/N 23454 Rev. D, 09-02-04
62

3 Device address (See Sections 6.1, 6.2) 31-5F
4 Sequence number (See following text)
5 Command(s) (n bytes) (See Section 4)
5+n End of command(s) <ETX> 03
5+n+1 Check sum (See following text)

Explanation of bytes:

Byte 1: The line synchronization character, FF hex, indicates a command
packet is coming.

Byte 2: The start transmit character, 02 hex, signals the beginning of a new
packet.

Byte 3: The device address is a address number for a device or for a group
of devices.  Up to 15 devices can be addressed.

Byte 4: The sequence number.  If an error occurs during the communication,
the host sends the last packet again to the device with a new
sequence number.  The sequence number starts with 31 hex (ASCII
1).  When repeating a command, the host sets bit 3 of the sequence
number byte to 1 and increases the sequence number by 1.  The valid
sequence numbers are hexadecimal 31 for the first packet,
hexadecimal 3A for the second packet (the first repeated packet), 3B
for the third packet, and etc.  The maximum number of repeat is 7
with a sequence number of 3F.

Byte 5: The command or a sequence of commands starts with byte 5.  A
command or a command sequence with length n bytes uses byte 5
to byte 5+n-1.

Byte 5+n: The end-of-command(s) character, 03 hex, indicates the end of a
command or command sequence.

Byte 5+n+1: The check sum is calculated by an exclusive-or operation on all bytes
except line synchronization byte and check sum byte.

6.3.4 OEM Response Protocol

This section describes the response packet format in the OEM protocol.  The OEM
response format is identical to the Cavro OEM response format.  The response
packet is used to send status and responses  from the syringe drive to the
controlling host device. 

Byte # Description ASCII Hex
1 Line synchronization character <blank> FF
2 Starting character <STX> 02
3 Host address   0 30
4 Status and error byte (see Section 5)
5 Response, if any (n bytes) (see Section 4)
5+n End-of-response mark <ETX> 03
5+n+1 Check sum (see following text)
5+n+2 Extra ending character <blank> FF



P/N 23454 Rev. D, 09-02-04
63

Explanation of bytes:

Byte 1: The line synchronization, FF hex

Byte 2: The starting character, 02 hex, signals the beginning of a new packet.

Byte 3: The host address, 30 hex, is the address number for the host
computer.

Byte 4: The status and error byte describes the device status.  Please refer
to Appendix C for the definitions of the status and errors.

Byte 5: There may or may not be response byte(s) for a command.  In
general, all query commands, read input commands, and
configuration query commands (~A, ~B, ~P, ~V, etc) produce
response bytes.  Other commands do not produce a response.

Byte 5+n: The end-of-response mark, 03 hex, indicates the end of the response
byte(s).

Byte 5+n+1: The check sum is calculated by an exclusive-or operation on all bytes
except the line synchronization byte and the check sum byte.

Byte 5+n+2: The extra ending character, FF hex, is an extra character to ensure
the packet is properly sent.  This character might not be displayed the
host terminal.

6.4 COMMUNICATIONS SETTINGS

There are four communications settings: address, bus termination, baud rate, and
protocol.  Baud rate and protocol are set by the configuration commands “~Bn” and
“~Pn” as explained in Section 4.6.  The address is set via the Address Switch or the
wiring on the card edge connector, as explained in Section 2.5.2 and Section 3.4.2.
The bus termination setting is explained in Section 2.5.1 and Section 3.4.1.

6.5 CONNECTING MULTIPLE DEVICES

Up to 15 devices may be connected to the same RS485 communications bus.  The
bus consists of three wires:  "A", "B", and signal ground.  The interface is normally
done  via pins on P1, identified in Section 2.4.1.  A proper bus structure consists of
the bus wiring and terminations at each end of the bus.

6.5.1 Bus Wiring

The bus wiring should connect all RS485 "A" pins to one wire, all "B" pins to another
wire, and all comm ground pins to a third wire.  The connections begin at one device
and proceed from that device to the next, one device  after another.  The three
wires connecting one device to the next should be twisted together with a twist rate
from one to three twists per inch.  A  wiring diagram is shown in Figure 6-1.  The
wiring to connect a PC to the first drive unit is shown in Figure 3.5.



P/N 23454 Rev. D, 09-02-04
64

The RS485 multi-pump bus MUST be wired from pump-to-pump in a serial
fashion.

Only the pump at each end of the RS485 bus may have the RS485 Bias 
switched “on”.  All pumps between the two end pumps MUST have their
RS485 Bias Switched “off”.  See Figures 2-1 and 2-3.

6.5.2 Bus Terminations

Each end of the bus must be terminated in a network which both biases the bus and
provides the proper impedance.  Terminations are made only on the first and last
devices along the bus as shown in Figure 6-1.  Terminating networks are provided
on each drive for these purposes.  To terminate the bus, set toggle switches 1 and
2 to the “ON” position for the first and last pumps on the RS485 bus.  All pumps
between the first and last must have these toggles set to “OFF”.

Figure 6-1     Multi-device Wiring Diagram



P/N 23454 Rev. D, 09-02-04
65

6.6 COMMUNICATIONS CHECKS

This section presents some procedures for determining whether a device is
communicating with a host controller.  The checks are predicated upon the use of
some form of terminal emulator program running on a PC.  This is a type of program
which sends ASCII characters typed on the keyboard to a serial port and displays
the ASCII responses received.   Before using such a program, determine the
number to which  the Address Switch, shown in Figure 3-3, is set.  The Address
Switch setting determines the value (from the tables in Sections 6.1 and 6.2) which
must be substituted for the notation "<addr>".   Each new command string must
begin with a front slash ( / ) followed by the value of <addr>.  Each command string
must end with a carriage return (the "return" or "enter" key).  See Section 4 for the
command syntax, and Section 6.3.1 for the DT command protocol.  Note that each
key  is sent when the key is pressed, so typed characters cannot be edited.  Editing
keystrokes will be sent to the syringe drive and will result in syntax errors.

After the  communications wiring is connected and the PC serial port cable has
been connected to the first device on the bus, turn on the pumps.  When the power-
up valve move is complete, send a Query of the module status as shown next.  If
needed, see Section 3.3, Section 3.4, and Section 3.5 for communications setup
instructions.

type /1<enter> Query the status of pump #1
/0' Response is "not busy, no errors”

If a response occurs, communications is operating properly.    A valid response from
a communicating module will always begin with "/0".  This is the default address of
the host controller.  If there are no errors to be reported, the next character after the
"/0" will be either an accent ( ' ) or a “@”.  The accent signifies that the module is not
busy and is ready to accept any commands.  The "@" signifies that the module is
busy and therefore only queries and the Terminate (T) command are acceptable.

Note:  If the query is sent while the power-up initialization sequence is in progress,
no response will be seen.  The pump does not "listen" until the power-up sequence
is completed.

If an apostrophe ( ` ) or an "at sign" (@) is not returned, and a letter is returned in
its place, then the module is reporting an internal error condition.  The interpretation
of such letter codes is given in Section 5.

If there is no response, then if the pump is not powered up, the communications
hardware connection is not properly made, or the communications  program is
either not properly configured or not operating correctly.  Check the items below:

(1) Insure that the communications connector is inserted properly into the RS-
232 connector and NOT into the RS485 connector.

(2) Try another comm port selection in step (5) of the Terminal program setup
procedure (Section 3.5.1).

(3) Using a voltmeter, with the communications cable connected to the RS-232
pins on P1, measure voltages from the "GND" pin to the "RXD IN" pin and
the "TXD OUT" pin.  Each pin should measure  -6 Vdc to -15Vdc.  If they do
not, the following errors may exist.

(a) "RXD IN" fails the check:   the host PC port is not functioning, the



P/N 23454 Rev. D, 09-02-04
66

communications cable is defective, or it is plugged in backwards.
(b) "TXD OUT" fails the check:   the RS-232 converter board or the

communications cable is defective, or the module is not powered on.

6.7 COMMUNICATIONS DRIVERS

A communications driver is a program, module, procedure, or function which can
be called by a program to send and receive ASCII strings to and from a pump.  In
general, drivers should be designed to "trap" (receive and recognize) the status
codes returned by a syringe drive in response to a command.

Kloehn Company provides a driver called KSerial which operates from the
command line and can be called from within a user’s program.  KSerial handles all
the communications overhead with Kloehn pumps in both DT and OEM protocols.

Appendix C provides a sample QBasic program which emulates a terminal in the
DT communications mode.  This code can be updated to Visual Basic® code or
used as a model for a simple, user-written DT protocol communications driver.



P/N 23454 Rev. D, 09-02-04
67

7.0 PROGRAM MEMORY

The VersaPump 3 has the ability to store and execute command strings.  A
command string is a group of commands run together, without spaces, to form a
single line of legal ASCII characters.  Such a string is also called a program.  For
example, the commands

I move valve to input position
A0 move syringe to fully-closed position
A3000 fill syringe
M500 delay 500 milliseconds
O move valve to output position
D1500 dispense half of syringe

can be placed into a single command string (program) as follows:

IA0A3000M500OD1500

In a command string, each new command will execute immediately after the
preceding command has completed.  The command sequence will run in the
minimum possible time without the need to query the drive to determine whether it
is busy or ready for the next command.  This can eliminate much communications
overhead.  Such a program can be executed immediately or some time after the
program is sent to the drive.  It can be executed from temporary memory (RAM) or
from non-volatile memory (NVM).

7.1 TEMPORARY MEMORY

When a command string is sent to the drive, the string is entered into temporary
memory (RAM).  This memory retains its contents while power is applied to the drive
unit.  When power is removed, the contents of RAM are lost.  After a command
string is executed, it may be repeated by sending the "X" command.

To execute a program at the time it is sent, append a "R" (“Run”) command to the
string.  If no "R" command is appended, the program will execute when a
subsequent "R" command is sent.  If another command is sent after the program
string and before the "R",  or if the "R" is appended to another command, the
original program string will be overwritten by the last command string.

For example, the command "D1000R" will execute as soon as it is received by the
drive.  The command "D1000" will be stored into RAM, but will not execute until a
separate, subsequent "R" is sent.

7.2 NONVOLATILE MEMORY

Non-volatile memory (NVM) will retain its contents even after power has been
removed.  The minimum retention time is about 15 years.  Thus the NVM acts as
if it were a "solid-state disk drive".  Up to ten programs can be stored in the NVM.
The maximum number of times a program string may be written into the NVM is
10,000.  After 10,000 writes, the integrity of a stored program cannot be
guaranteed.  There is no limit to the number of times a stored program can be read
or executed.



P/N 23454 Rev. D, 09-02-04
68

The maximum number of times a program string may be written into the NVM
is 10,000.  After this, the integrity of a stored program is not guaranteed. 

The COMM DEFAULT toggle switch  must be set to OFF for the Auto-Start
feature to function.  The toggle in the ON condition will inhibit Auto-Start.

7.2.1 Saving and Erasing a Program

A program string is saved into the NVM by sending it to the RAM without a "R" run
command appended, and then sending the "En" command as a separate
command.  When the “En” command is received, the string in RAM is transferred
into the NVM as stored as “program #n”.  To erase a command string in NVM, either
overwrite it with another command string or send the "en" (erase) command.

Because of the limitation on writes, NVM should not be written every time an
application is run.  It should be used to store a command sequence or program if
that program will be long-lived in the application.  Short-term programs such as
programs which can change often, should be executed from RAM.   Some program
which vary in the numbers but not in structure can use general variables, as
explained in Section 4.5.

7.2.2 Listing a Program

A program saved into NVM can be queried with the "qn" (program query) command.
When the "qn" command is received, the drive will respond by sending the complete
command string, if any, found in the NVM.  The command string will be terminated
with a period.  If no command string is found, only the period will be returned after
the status byte.

7.2.3 Auto-Starting an NVM Program

The VersaPump 3 has the ability to automatically begin executing a program stored
in NVM when power is applied.  This feature is known as "Autostart".  This is useful
for those applications which may require rapid and automatic pump initialization or
in cases where a program sequence is controlled with User Inputs or Expansion I/O.

The Autostart feature is enabled by setting the "~An" parameter to "1" with the
"~A1" command.  The auto-start can be disabled by setting the "~An" parameter to
"0" with the command "~A0".   These commands require no "R" command.

When writing an Auto-Start program, remember that the syringe cannot be
commanded to move until it has first been told to initialize to the soft limit with a
"W4", a "Y4", or a "Z4" command.  However, all commands other than a syringe
move command can be executed before (or without) executing a "W4", "Y4", or
"Z4".  It is therefore recommended that one of these commands, followed by an
"absolute position" move to zero position ("A0"), be included at the beginning of an
Auto-Start program. 



P/N 23454 Rev. D, 09-02-04
69

7.2.4 Externally Starting a Program

The User inputs and the input test-and-jump instructions provide the means to
“trigger” a program running in the pump.  The program can be self-starting on
power-up (see Section 7.2.3 for details).  The program would be programmed to
read an input and wait for an active signal to continue program execution.  Doing
a series of identical dispenses using a probe and pushbutton (or foot switch) is a
common application of this technique.  See Section 8.3.1 for programming
examples of waiting for an input signal.



P/N 23454 Rev. D, 09-02-04
70

Do NOT set the configuration values each time the system is powered-on. 

8.0 PROGRAMMING TECHNIQUES

This section presents some application techniques for good system design.  Some
sections discuss means of using some of the pump’s special features, while some
deal with the best programming practices for host controller software development.

8.1 CONTROLLER INTERFACE SOFTWARE

This section discusses best practices when writing software to control the pump.
These techniques represent years of practical experience in developing
applications.

8.1.1 System Initialization

When a pump is installed into a system, the pump may not have the configuration
parameters set to the needed values  (see Section 4.6 for configuration
parameters).  Such parameters include valve type, I/O operating modes, and
initialization parameters.  The overall system reliability in the field is greatly
enhanced if the controller software can perform the setting of these parameters as
needed when a pump is installed.

The parameters are set in non-volatile memory (NVM) by the configuration
commands.  The number of writes to NVM is limited.  For this reason, the
parameters should only be set when they are incorrect, and not each time the
system is powered on.

A good system programming technique is to read the parameters at system power-
on, compare the values to the desired values, and set only those parameters which
are not correct.  The general form of such code would be

Query <parameter>
if <parameter> is not the <desired value> then Set <parameter>

For example, if the valve type should be “6", the code might look like this in Basic:

OPEN  "COM2: 9600, N, 8, 1, CS0, DS0, CD0, RS" FOR RANDOM AS #1
PRINT #1, “/1~V”; CHR$(13) 'Query valve type (add <CR>)
FOR n = 0 TO 1000: NEXT n 'Pause to receive entire reply
In$ = INPUT$(LOC(1), #1) 'get reply string from pump
IF MID$(In$, 4, 1) <> "6" THEN ‘If parameter not correct, then

         PRINT #1, “/1~V6";CHR$(13) ‘set it to the correct value
END IF
CLOSE #1

Using this technique, factory installations and field replacements will always be
correctly configured.  This technique can also be used to ensure any required user
programs are stored into the NVM.  If an external text-based configuration file is
used, servicing the system software becomes an easy matter.



P/N 23454 Rev. D, 09-02-04
71



P/N 23454 Rev. D, 09-02-04
72

Commands might NOT execute in the same time if an error condition occurs. 
Do NOT use timing loops to determine when to send the next command.

8.1.2 Sending Single Instructions

A common error in application programming is to assume a given instruction or
instruction sequence will take a fixed length of time to execute.   The next instruction
is then sent after this fixed delay.  This programming technique can lead to system
failures.

The only valid way to determine if the pump is ready to accept another command
is to query its status.  The simplest way to do this is to send just the address and a
carriage return character (hex 0D or decimal 13).  A typical query might be:

/1<Carriage Return>

Wait for the reply and check the status byte to see if the pump is ready or busy (see
Section 5.1 for the status codes).  The queries should not be sent too fast.
Checking at a rate of eight times per second or less  is adequate for nearly all
systems.  This also permits the controlling software to discover error conditions
much sooner than would otherwise occur.

Two situations are deserve special acknowledgment: valve moves and traps.  If a
valve motor stall occurs, the valve will automatically attempt a recovery (see Section
4.2).  The recover attempt can take up to several seconds.  An error trap causes the
program to go to a user program to handle the error (see Section 4.8).  This can
extend the time required for a program sequence to complete.

A second way to determine when the pump has completed a task or operational
cycle is to program the pump to set a User Output to ON when each instance of the
task is done.  A controller can sample the controller input to which the pump output
is connected.  This technique avoids the communications overhead.

In general, it is better to send commands as groups rather than individually, as each
command will execute immediately after the preceding command has finished,
without any controller overhead.  Periodic status queries are still a good idea.

8.1.3 Using Stored Subroutines

Many tasks are repetitive.  These include priming cycles, wash cycles, and some
fixed I/O routines.  The essential nature of such command sequences is that they
never vary; they always execute exactly the same way.  Such a routine is a good
candidates for a stored program.  By storing such a routine in the NVM, the
overhead of repeating it in a program or sending a long command string can be
avoided.  A program can “call” a stored program with the call command “jn”.  A host
software program can call the routine with the stored program “run” command “r n”.

Calling stored routines is a very efficient way to handle repetitive tasks.  With the
use of general variables (see Section 4.5.1), even tasks which vary only in the
numbers, but not in the sequence of events, can be stored and called, with the
numbers set when the routine is called.



P/N 23454 Rev. D, 09-02-04
73

8.1.4 Protecting the User

The pump has two buttons on the front panel.  The INITIALIZE button simply moves
the syringe to the internal calibration point.  If a user presses this button, no harm
is usually done.  The upper button is the SET HOME button.  If a user presses this
button, the location of the zero point is reset to some indeterminate (and probably
wrong) location and errors in operation are likely to result.

Button-induced user errors can be avoided by using the HOME button inhibit
features.  The button can be inhibited long-term using the configuration command
“~Hn”, which inhibits the button via the NVM.  This is useful when only a service
technician is allowed to replace syringes, valves, or washers.

If the user is to be allowed to set a new HOME position, there may be an advantage
in inhibiting the SET HOME button as part of the system initialization.  The user, like
a technician, would then enter a “setup” mode to enable the button.  The button
would be disabled when the setup mode is exited.  For this operation, use the “f9"
flag, as this is not written to NVM.  See Section 4.9.3 for operational details.

8.2 PUMP PROGRAMMING TIPS

This section offers techniques for programming the pump using pump command
strings.   These  techniques extend the usefulness of the pump.

8.2.1 Programming Very Slow Moves

The lowest speed at which the pump can be programmed to move by using the Top
Speed command (“Vn”) is 40 steps per second (sps).  Much slower speeds are
possible using a “step-and-delay” technique.

In the step-and-delay technique, a short program sequence is used in place of a
discrete speed setting.  The sequence is:

Function Dispense Aspirate Time delay
Mark start of repeat loop     g      g    0
Move one step     D1      P1 24 msec
Pause “n” milliseconds (msec)     Mn      Mn “n” msec
Repeat for “m” steps     Gm      Gm    0

Thus the complete program string for a dispense is then “gD1MnGm”.  The
equivalent  speed is found as the reciprocal  of the time to execute one pass
through the loop.

Speed = 1/Time

Example: gD1M17G6000 (Start Speed = 650)

Time = 24 + 17 msec = 41 msec (.041 seconds)
Speed = 1/Time   = 1/.041 = 24.39 steps per second for 6000 steps

The calculations above may require fine adjustment in “n” for greater accuracy in
very slow moves.



P/N 23454 Rev. D, 09-02-04
74

Error trapping can NOT fix external mechanical or fluidic problems.  Trapping
is intended to provide graceful systems exits from error conditions.

8.2.2 Programming Error Traps

Errors can occur during operation of the pump.  Errors can range from incorrect
commands to motor overloads.  The pump can detect most error conditions (see
Section 5).  For some systems, the robustness of the design can be enhanced by
programming the pump to take corrective action automatically.  This is called
trapping and the part of the user program designed to handle the error is called the
error handler, or exception handler.   The syntax to do this is given in Section 4.8.
This section will provide an examples of error trapping.

Example: Trap a syringe overload error.  Save the value of the syringe position,
initialize the syringe to the input port, then return to the stall position
and continue the dispense.  Note: this assumes the dispense was
intended to deliver all the contents of the syringe.

In the main user program, the trap is set by declaring:

x9V If a syringe overload (#9, see Section 5), occurs, go to label “V”.

At the end of the program, where error handlers are normally located, the
handler might be as follows:

:V label identifies start of handler (label used in trap instruction above)
k@7 store current syringe position in Software Counter for later use
k^1 exchange with counter memory #1
k@6 save current valve port position in Software Counter
Y4 initialize syringe to reservoir port (~Yn set which port this is)
o@5 move valve back to previous port position
k^1 place previous syringe position back in Software Counter
A@5 move syringe back to stall position
A0 Complete dispense
t1 Resume program execution with the next instruction

There are some limitations on error trapping.  The error trapping feature is designed
to provide a graceful recovery from errors, but it can not fix system errors.  Any error
induced by mechanical or fluidic problems cannot be fixed by a program.  Such
things must be fixed at the external root cause.  In some cases, a syringe overload
might be handled by reducing the syringe speed and trying again.

Example: Recover from a valve overload by initializing the valve and then
repeating the valve move.  An “error cycle counter” is included to
prevent a run-away loop.

In main program, zero counter memory #2 and declare a trap:

k^2 exchange counter with counter memory #2 (preserve k value)
k0 set current counter to zero
k^2 restore current counter and place zero in counter memory #2
x10p If a valve overload (error #10) occurs, go to program label “p”.



P/N 23454 Rev. D, 09-02-04
75

If an error occurs while an error handler is executing, the program will
perform a normal program error exit, regardless of the error handler.

At the end of the program, where error handlers are normally located, the
handler might be as follows:

:p label identifies start of handler (label used in trap instruction above)
o1 initialize valve position
k^2 get counter #2
k+1 increment error loop counter
k>5q if more than 5 valve errors, go to label “q”
k^2 if not, restore previous counter value
t4 try the valve move again
:q label q means more than 5 valve errors (from k>5q)
k^2 restore previous counter value
U3 signal terminal error (via User Output #3)
t3 do a normal program error exit (stop program and make error

message.

In the preceding example, the “t4" exit retries the instruction which caused the error.
If the initialize move works, but there are more than 5 retires without success, the
handler exits the program after setting an external “error” signal.  If the initialize
move fails, a program exit would occur.  If an error occurs while in the error handler
routine, a normal error exit takes place, superceding any user error handler.

Example: If any error occurs, set the User Output #2 low, set User Output #1
high, save the current Digital Voltmeter input value, and then exit the
program.

Set the error trap in the main program:

x*s if any error (*) occurs, go to program label “s”.

At the end of the program, where error handlers are normally located, the
handler might be as follows:

:s label marking start of error handler
U2 Set User Output #2 low
u1 Set User Output #1 high
k@3 Save the current Digital Voltmeter input value
t3 Do a normal error exit

8.2.3 Setting the Speeds

For most applications, the factory default values for syringe accelerations and
speeds are adequate.   Usually, only the Top Speed is changed for different syringe
rates.  If the Top speed  is set lower than the Start speed, the pump will begin a
move at the Top Speed.  If the Top speed is set lower than the Stop Speed, the
move will end at the Top Speed.  For this reason, values of Top speed which are
set lower than either the Start Speed or the Stop Speed do not require any
adjustment in Start speed or Stop Speed.



P/N 23454 Rev. D, 09-02-04
76

The default values of the Start and Stop speeds have been set to perform well for
nearly all normal applications.   On occasion, it may be useful to change the speeds
from the default settings.  This section explains the considerations involved.

The syringe uses three speeds and two accelerations which can be set.  The
speeds are Start Speed, Top Speed, and Stop Speed.  The two accelerations are
the Ln and ln values which set acceleration and deceleration rates, respectively.

The syringe motor does not start at zero speed and accelerate smoothly to the Top
Speed (at which syringe moves normally occur).  Rather, the motor jumps abruptly
from zero to the Start Speed and then accelerate smoothly to the Top Speed.  The
move proceeds at the Top Speed.  As the destination is approached, the motor
decelerates from the Top Speed to the Stop Speed.   When the Stop Speed is
reached, the motor performs an abrupt stop at the target position.  The speed profile
is thus trapezoidal, as shown in Figure 8-1.

Figure 8-1     Normal Syringe Speed Profile

If a high Top Speed and low acceleration are combined with a very short move, the
syringe speed may not reach the programmed Top Speed and the prof ile of Figure
8-2 will result. 

Figure 8-2     Slow Acceleration or Short Move Speed Profile



P/N 23454 Rev. D, 09-02-04
77

In actual practice, a typical move spends nearly all the time at the Top Speed and
the acceleration and deceleration are very small parts of the total move.

When selecting Acceleration and Top Speed, there is a trade-off between the two
values.  The acceleration of the system inertia (pump inertia + fluid inertia) uses part
of the available motor power.  The motion of the fluid requires additional motor
power to overcome back-pressure.   If the sum of acceleration power and back-
pressure power exceeds the capacity of the motor, the syringe motor will stall and
the pump will generate a “syringe overload” error.  One or both of the values for Top
Speed and Acceleration would need to be reduced.

The back-pressure of a fluid in motion is greater at the syringe than at the delivery
point.  The difference between the two is the pressure rise.  The pressure rise can
exceed several hundred psi (tens of atmospheres) in some cases.  Here are some
of the factors which contribute to the pressure rise and consequent back-pressure:

Factor Effect
Path diameter Pressure varies as fourth power of diameter
Path length Pressure varies directly with length
Fluid velocity Pressure varies with square of velocity
Temperature Temperature changes viscosity, which changes back-

pressure.  Over 5:1 variations are possible.

All these effects are cumulative.  Bar far the most sensitive is the path diameter.
An increase of just 19% in inside diameter of the tubing or an orifice can drop the
back pressure by as much as 50%.  One source of gradually increasing back-
pressure is too much torque on the fittings used with the valve.  The valve requires
Teflon®  washers  to seal the fitting-to-valve connection.   If the fittings are tightened
too much, the pressure of the connection will cause the Teflon to “cold flow” in a
way that  reduces the size of the hole in the washer.  In extreme cases, the hole can
shrink to a pin-hole.

Higher fluid velocities have two reinforcing effects: (1) the pressure increases as the
square, and (2) the available motor power decreases with increases in speed.  If
syringe overloads are occurring, small reductions in Top Speed can produce major
improvements in system reliability.

If a move fails to begin, the problem may be too high a Start Speed or a blocked
fluid path.  In general, the default value of Start Speed is a good compromise.

If the pump generates frequent “Z” errors (error #26), the cause may be too high a
Stop Speed.  An abrupt stop from too high a speed may cause syringe position to
become corrupted, resulting in the error message.  In nearly all cases, no value of
programmed deceleration will result in this problem.

When adjusting the speeds, consider the trade-offs and consequences.  Most
problems are the result of too high a Top Speed or too high a Stop Speed.  The Top
Speed must be set to accommodate the dimensions of the fluid path, the fluid
viscosity, and the decreasing thrust force as speed increases.



P/N 23454 Rev. D, 09-02-04
78

8.2.4 Counting Program Cycles

The number of times a given event has occurred can be determined with the
Software Counter (see Section 4.9.1).   In the example below, the number of times
a programmed dispensing sequence has occurred is counted so a controller can
query the pump to determine the number of dispenses which have occurred since
the program was initiated. 

Example: Count the number of times a dispense has been made in an
automated dispensing cycle:

k0 set the counter to zero (start of dispense program)

:B mark start of f illing of syringe
o-1 move valve to reservoir port
A12000 fill syringe (12000-step model)
o3 move valve to dispense port

:A mark start of dispense loop
y<1500B if not enough left to dispense, refill (go to label :B)
D1500 Dispense 12.5% of a syringe (12000-step model)
k+1 increment the software counter
JA do another dispense loop

In the example above, the program begins by setting the counter to zero. the
syringe is refilled each time the syringe position is too small to do another dispense.
After each dispense, the counter is incremented by “1'.  The counter can be queried
at any time to read how many dispenses have occurred.  The complete program
string would be:

k0:Bo-1A12000o3:Ay<1500BD1500k+1JA

8.2.5 Converting Volume to Steps

The conversion of syringe volume to steps (syringe increments) can be easily done
using a proportion.

       steps required         =      desired volume        
 total steps in full stroke total volume of full stroke

Example: Assume a total syringe volume of 5 mR (5000 µR), a desired volume of
250 µR, and a 12,000 step model syringe drive.  The required number
of steps can be found as

Set up proportion:

steps required =     250 µR
     12,000   5000 µR

Solve for desired quantity

steps required  = 12,000 ( 250 / 5000 )
    = 600



P/N 23454 Rev. D, 09-02-04
79

The preceding proportion can be used to find speeds also if the “steps required” is
replaced with “steps per second” and the “desired volume” is replaced with “volume
per second”.

8.3 I/O INTERFACE PROGRAMMING

User Inputs and User Outputs (I/O) can be used to preform a variety of interfacing
tasks.  In stand-alone operation, without a serial communications controller, the I/O
can be used to trigger program operations and to indicate operational status.  In
multiple-pump operations, the I/O can be used to coordinate and synchronize the
operations of the pumps.  One special case is the synthesis of continuos fluid flow
using two pumps.  This section provides some interfacing techniques to aid in using
the pump I/O.

8.3.1 Waiting for an Input

In many applications, it is desirable for a pump to wait for an external input signal
to start an operation.  Test-and-jump commands are used to sense the state of an
input signal at a User Input and control the program operation.  There are two basic
scenarios:  wait for a high level and wait for a low level.

Example: Wait for a high input level:

:A program label “A”
i2A if input #2 is low, go back to label “A”

When input #2 goes high, the “i2A” instruction will be “false” and the jump
back to label “A” will not be taken.  The next instruction in line will be
executed.  It should be noted the inputs have internal pull-up resistors, so in
the absence of a signal connection, the default input level will be high.

Example: Wait for a low input level:

:r program label “r”
i3T if the input #3 is low, go to label “T”
Jr jump always to label “r”
:T label “T”

While the input is high, the test for input #3 to be low will fail and the jump to
“T” will not be taken.  The next command, “Jr” is therefor executed.  The “Jr”
command  send the program execution  back to the “r” label and the test will
be repeated.  When input #3 goes low, the jump to label “T” will be taken.
Label “T” then leads to the next instruction in the program.

8.3.2 Handshaking Between Pumps

Handshaking between pumps uses the techniques in Section 8.3.1 to synchronize
the operations of two or more pumps.  Each pump sends a signal to the other
pumps while monitoring the signals from the other pumps.  Each pump therefor
waits for another pump to trigger its next operation.  The example below illustrates
the nature of the bidirectional trigger signaling, called a handshake.



P/N 23454 Rev. D, 09-02-04
80

Figure 8-3     Handshake Operation

Figure 8-3 shows the wire connections for a handshake.  It is assumed the
necessary ground connection between the pumps is present.  Each pump has one
output connected to and input on the other pump.  This allows each pump to send
a signal to the other pump.  The sequence of operations is illustrated in the voltage-
time diagram of Figure 8-3.

First Handshake:

At the beginning, both outputs are idle at the high level.
At (1), pump 2 sets its Output #2 low to signal pump 1 to begin its next operation.
At (2), pump 1 sees the signal and sets its Output 2 low to indicate “signal seen”.
At (3), pump 2 sees the response from pump 1and resets its output back high.
At (4), pump 1 sees the return high from pump 2 and sets its output back high.
After (4), pump 1 begins its next operation and both outputs are in the initial state.

Second handshake:

Initially, both outputs are back in the idle high state.
At (5), pump 1 sets its Output #2 low to signal pump 2 to begin its next operation.
At (6), pump 2 sees the signal and sets its Output 1 low to indicate “signal seen”.
At (7), pump 1 sees the response from pump 2and resets its output back high.
At (8), pump 2 sees the return high from pump 1 and sets its output back high.
After (8), pump 2 begins its next operation and both outputs are in the initial state.

The handshake command strings are the same for each pump.  Any of the User
Inputs and Outputs could have been used.  The handshake command strings for
the preceding example are as follows.



P/N 23454 Rev. D, 09-02-04
81

Starting a handshake:
u2 set output #2 to signal “Go” to the other pump
:A label “A”
i2B if input is low, go to label “B”
JA if not low, go to label “A”
:B input is low
U2 set Output #2 high again to say “signal is seen”

Receiving a handshake:
:C label “C”
i2D if input is low, go to label “D”
JC if not low, go to label “C”
:D input is low
u2 set Output #2 low to say “signal is seen”
:E label “E”
i2E if input is still low, check it again
U2 input went high, so set out back to high

One special case of a handshake is the handshake dispense, described in Section
8.3.3.  This command provides an automatic handshake sequence.

8.3.3 Programming Continuous Flow

When a continuous fluid flow is required, the handshake dispense commands may
be used to synthesize the flow using two pumps.  The resulting flow is continuous,
with no gaps in delivery.  The handshake connections and signal sequences
explained in Section 8.3.2 are used, but the handshaking is an inherent part of the
instructions and does not require any programing.

The input ports of both pumps are connected with a “T” fitting so a single source line
is used.  The output ports of both pumps are connected together with a “T”
connection to sum the two outputs into a single delivery line.

As one pump is dispensing, the other pump is refilling.  When pump A approaches
the end of its dispense, it signals pump “B” to begin to dispense.  While pump B is
dispensing, pump A refills itself.  The handshake signals which tell each pump to
begin its dispense are generated by the dispensing pump just prior to finishing a
dispense.  As one pump is finishing a dispense, the other begins and the fluid flow
is thus continuous.

The syntax of the handshake dispense is hn (handshake dispense)

When this instruction is encountered,  the pump begins testing User Input #n for a
low level.  When a low level is seen, a dispense begins.  The dispense is always
from the current syringe position to zero (the full-dispense position).  As the
dispense nears the zero position, the User Output #n is set low just before the
dispense ends.  This is used as advance notice to the other pump to start its own
handshake dispense.  All these I/O operations are automatic.

To begin a handshake dispense without an external trigger signal, use the syntax
“h-n”.  This is useful to start a handshake dispense operation or to resume one that
has been stopped.



P/N 23454 Rev. D, 09-02-04
82

The handshake sequences below assume the syringes are both filled and the
valves are both at the dispense port.

Initiating pump:
V2000 Set the dispense speed
h-n Begin the handshake dispense immediately
:S Label “S”
o-1 Move the valve to the input port
V6000 Set the filling speed
A12000 Fill the syringe
o3 Move the valve to the dispense port
V2000 Set the dispense speed
hn Do a standard handshake dispense
JS go to label “S” for another cycle

Other pump:
:S Label “S”
o-1 Move the valve to the input port
V6000 Set the filling speed
A12000 Fill the syringe
o3 Move the valve to the dispense port
V2000 Set the dispense speed
hn Do a standard handshake dispense
JS go to label “S” for another cycle

Note the initiating pump differs only in the first two lines, which are needed to start
the overall process.  Once begun, both pumps use the same handshake command
sequence.  Special note should be taken of the speeds.  The refill speed must be
faster than the dispense speed by a difference which allows the refilling pump to
make two valve moves and refill the syringe before the dispensing pump completes
its dispense.

8.3.4 The DVM as a Selector Switch

The Digital Voltmeter (DVM) input can be used as a selector switch.  If repeatable
voltage levels can be applied to the DVM input, a series of tests can be made to
determine what the program should do next.  These levels can be generated from
a digital-to-analog converter or from a series of  resistors soldered around a selector
switch to form a tapped voltage divider.  In the following command sequence, each
test level is chosen to be half-way between the actual voltage levels, not at the
voltage levels.  This is done for noise immunity.

Example: Assume six discrete voltage levels at 0, 1, 2, 3, 4, and 5 volts.  The
test thresholds would be at 0.5, 1.5, 2.5, 3.5, and 4.5 volts for a total
of five possible selections.

The actual test numbers are found as: number = volts x 51
Selection  1: 0.5 volts = 25
Selection  2: 1.5 volts = 76
Select ion 3: 2.5 volts = 127
Selection  4: 3.5 volts = 178
Selection  5: 4.5 volts = 229



P/N 23454 Rev. D, 09-02-04
83

The test sequence uses the numbers calculated above.
:A label “A” marks start of test loop
i>229B if selection is 5, go to label “B” (start of selection 5)
i>229C if selection is 4, go to label “C” (start of selection 4)
i>229D if selection is 3, go to label “D” (start of selection 3)
i>229E if selection is 2, go to label “E” (start of selection 2)
i>229F if selection is 1, go to label “F” (start of selection 1)
JA if no selection, test loop again

The order of the tests is critical.  If the order were reversed, all selections would
satisfy the test for selection 1.  Each label “B” through “F” denotes the place in the
program at which the commands for each different selection begins.  The command
sequence of reach selection must end with a jump back to Label “A” (“JA”) so the
selection process will continue when each selection is done.

8.3.5 Position Snapshots

When the precise location of the syringe at the time of an external event must be
known, the pump provides a means to record this.  Such information is useful in
titrations and other applications in which an external sensor detects an event while
the syringe is in motion.  Although the syringe position can be queried while the
syringe is in motion, the communications overhead prevents the exact syringe
position from being determined through on-the-fly position queries.  The snapshot
feature overcomes these limitations and provides exact measurements.

The snapshot feature uses the User Input #3.  Each time the User Input #3
transitions from  high-to-low,  the current location of the syringe is stored in memory.
  The snapshot  memory retains the positions for the two most  recent input
transitions.  The syringe positions for these two points can be queried at any time
with the “?29" query.  This feature is always available regardless of the input #3
operating mode.

The snapshot feature is very useful for titrations using optical detection, where the
detector outputs a double pulse and the two positions at the time of the pulses must
be known.  It is also useful in any application in which the amount to be dispensed
is unknown in advance and must ve determined on-the-fly during the process.

8.3.6 Using the Expansion Port

The V3 includes three digital inputs, three digital outputs, and a Digital Voltmeter
input as part of the standard unit.  For those applications which need more I/O or
different I/O, an Expansion I/O port is also included.  The Expansion I/O port is a
synchronous serial port which can increase the I/O by either one byte (eight bits of
input + eight bits of output) or two bytes (16 bits of input + 16 bits of output).  Kloehn
makes an I/O Expander Board (P/N 50765) which implements the two-byte
expansion.

The 50765 I/O Expander Board is an example of the I/O increase possible with the
Expansion port.  The 50765 provides 16 extra inputs which can be operated as two
bytes or bit-by-bit, and 16 extra outputs, each of which can switch up to 250
milliamperes at up to 40 Vdc.  These can be used to control solenoid valves, relays,
indicator lights, or other motors.



P/N 23454 Rev. D, 09-02-04
84

The Expansion I/O port consists of four signals and two power leads which provide
+5 Vdc power for external circuits.  The details of the signals are given in section
11.7.4.

The Expansion I/O is managed by extensions of the basic I/O commands as listed
in Section 4.3.  The relevant commands are listed next, emphasizing the Expansion
syntax.  The outputs are controlled by these commands, which may be included in
a program:

sn Send a serial byte from the User Serial expansion Port, MSB first.  The value
of the ASCII number "n" is the base 10 representation of the value of a
binary byte.  For transmitted bytes, positive logic applies ("1" = high logic
level).  In the 2-byte serial mode, "n" represents the second byte sent.  The
first byte is the same as the first byte sent by a "sn,m" instruction.  See
Section 4.5 for an explanation of "@n" usage.
(n: 0...255, @n) [n/a]

sn,m Send two bytes from the User Serial expansion Port,  byte "m" first and then
byte "n" second.  Both bytes are sent MSB (most significant bit) first.  The
values of "n" and "m" are expressed as the ASCII base 10 representation of
the binary bytes.  
(n: 0...255,  m: 0...255, @n) [n/a]

Un Turn the user parallel output "n" ON (low logic level) or turn on a serial I/O
port output bit.
(n: 11...18 = serial byte 1, bit 1...8 of the serial expansion port

21...28 = serial byte 2, bit 1...8 of the serial expansion port) [n/a]

un Turn the user parallel output "n" OFF (open-circuited) or turn off a serial I/O
port output bit.
(n: 11...18 = serial byte 1, bit 1...8 of the serial expansion port

21...28 = serial byte 2, bit 1...8 of the serial expansion port) [n/a]

The inputs are read by these commands, which are executed immediately upon
receipt and cannot be included in a program:

?10 Query the value of the first  byte received from the Expansion I/O port input.
 An input byte is shifted in (MSB first), and the numerical value of the first
input  byte is reported in a base 10 ASCII format.   The value uses a negative
logic convention (low level = 1,  high level = 0).   In 1-byte mode, this is the
only byte.  In 2-byte mode, this is the first of two bytes.

?20 Query the value of the  second  byte received from the Expansion I/O port
input in 2-byte mode.  Two input bytes are shifted in (MSB first), and the
numerical value of the second input byte is reported in a base 10 ASCII
format.  The value uses a negative logic convention (low level = 1,  high level
= 0).  This instruction is not valid in 1-byte mode.

?n Query the state of the Expansion I/O port input bit designated by "n".  A
serial byte is input (MSB first), and the state of the designated bit is reported
as an ASCII "0" if the bit is "false" (high input logic level) or an ASCII "1" if
"true" (low input logic level).
(n: 11...18 bit 1...8 in Expansion input byte #1

21...28 bit 1...8 in Expansion input byte #2)



P/N 23454 Rev. D, 09-02-04
85

Program control using the Expansion I/O is possible with the next command, which
can be included in a program:

inp If the input level is true (low input level), jump to label "p".  This checks if an
Expansion input bit is at a low level.
(n: 11...18 bit 1...8 in Expansion input byte #1

21...28 bit 1...8 in Expansion input byte #2
 p: a...z, A...Z) [n/a]

The byte value of an expansion I/O byte can be used to control program flow with
the Software Counter test-and-jump commands (see Section 4.9.1) using an indirect
variable (see Section 4.5.2).

Example:

k@1 load Software Counter with first Expansion input byte
k<np if counter < “n” (value of first byte) then go to label “p”

Expansion hardware design is simple, as most common shift registers can be used
to transfer data into or out of the Expansion I/O port, as shown in Figure 8-4.

Figure 8-4     Sample 8-bit Input Circuit for Expansion I/O

In the circuit of Figure 8-4, the user inputs are labeled with their equivalent binary
weights, with “128" as the most significant bit.  The inputs are shown with pull-up
resistors (4.7K) and series input protection resistors (100K).  These resistors are
highly recommended.  This circuit will provide an extra eight bits of input in the one-
byte mode (see Section 4.6).

If a two-byte version is needed, a second CD4021B should be added.   The “QH”
of the second  chip should be connected to the “Ser” input of the first chip and the
two “Clk” inputs should be connected together.



P/N 23454 Rev. D, 09-02-04
86

8.3.7 Generating External Pulses

In some applications, it may be useful to generate pulses on one of the User
Outputs.   This can be done with a simple repeat loop as shown below:

g Start of repeat loop
U2 Turn on output #2
M10 Make the negative pulse width 10 milliseconds
u2 Turn off output #2
M20 Make the high pulse width 20 milliseconds
G16 Generate 16 pulses

The complete command string is: gU2M10u2M20G16

If the two time delays are omitted to obtain the maximum pulse rate, the resulting
pulse rate is about 400 pulses per second.

8.3.8 A Binary Input Selector

In some applications, one of several selections must be made via a selector switch
or PLC logic lines.  The most economical approach is to encode the inputs as binary
numbers.  This section describes a way to program a binary selection tree.  This is
a way of making the input bits act as if they have a binary weighting (e.g., 1, 2, 4,
etc.).  This illustration uses all three inputs as a seven-way selector.  The Expansion
I/O could also have been used to input the bits with the same instructions (see
Section 8.3.6 for Expansion I/O commands).  Figure 8-5 shows a flow chart of the
algorithm.

Figure 8-5     Binary Selection Tree Flow Chart



P/N 23454 Rev. D, 09-02-04
87

The corresponding commands are:

:A label “A” marks start of selection tree
i3K Is 3 on?  If yes, go to label “K”
i2L Is 2 on?  If yes, go to label “L”
i1B Is 1 on?  If yes, go to label “B” (selection = B)
JA Go to label “A” (no selection)
:L label “L”
i1D Is 1 on?  If yes, go to label “D” (selection = D)
JC Go to label “C” (selection = C)
:K label “K” (second half of binary tree)
i2M Is 2 on?  If yes, go to label “M”
i1F Is 1 on?  If yes, go to label “F” (selection = F)
JE Go to label “E” (selection = E)
:M label “M”
i1H Is 1 on?  If yes, go to label “H” (selection = H)
JC Go to label “G” (selection = G)

A three-way selection tree would use only the commands from “:A” through “JC”.
Each of the labels “B” through “H” is the start of the command sequence which
corresponds to the input selection.  Each selection command sequence must end
with a “JA” (jump to label “A”) so the input selection procedure can continue when
a process is done.  Note the selection “A” goes back to the start of the selection
tree.  This is done to provide a “no selection” position.  If some other means of
initiating the selection process (other than a “valid” selection) is used, then label “A”
can be used for an eighth selection.

8.3.9  Driving External LEDs

External LED (light-emitting diode) indicators can be driven from the User Outputs.
The diode anode should  be connected to  +5Vdc  through a  470-ohm resistor.
The LED cathode is connected to the output.  When the output is turned “on”, the
output level will go low and turn on the LED.  The output level will still be low enough
to drive other external logic.  A “super-bright” LED should be used.

An output could also drive the input to an opto-isolator.  The internal opto-isolator
LED should be connected as described above.  The drive current will be about eight
milliamps.

The Error Out  output can also drive an LED.  This output should be connected as
described above, or the anode of the LED can be connected to the Error Bias pin,
which provides an internal resistor to +5Vdc.

8.3.10  Wired-Or Error Signal

The Error Out signal is an open-drain MOSFET.  This permits all the Error Out pins
of several pumps to be wired directly together.  This creates a single, composite
Error Out signal for all pumps.  This composite output can be wired to an LED, opto-
isolator, other logic, or a relay (up to 160 mA).  If any pump has an error, the output
will be active.



P/N 23454 Rev. D, 09-02-04
88

9.0 POWER

This section describes the low voltage condition detection, the selection of power
supplies, and good power distribution wiring practices.

9.1 POWER SUPPLY SELECTION

9.1.1 Capacity Selection

The power supply capacity should be consistent with the specifications of Section
11.3 of this manual.  If a Kloehn power supply is used, these specifications will be
met.  One Kloehn P/N 17732 power supply has sufficient capacity to power two
VersaPump 3 devices.

An output capacity of 25 watts at 24 Vdc is considered a practical value for a one-
pump power supply for normal pump operation.  The normal idle power
consumption is about 6 watts.  The 25 watt rating allows for the maximum power
required during syringe and valve moves, with a small reserve for reliability.

For multiple pumps on one supply, the overall system operation should be
considered.  If there are N pumps, of which only M units will be making a syringe or
valve move at the same time, then the average power capacity of the supply should
be at least  P = 25M + 6(N-M)  watts.   The pump automatically turns on the valve
motor for moves and then turns it off when not moving. See section 8.2 for
additional multiple-pump system wiring considerations.

At power-up, all the valve motors will make simultaneous valve calibration moves,
demanding about 0.8 Adc each.  To allow for the valve calibration moves, the power
supply should have a peak power capacity of P = 25N watts.  The peak capacity is
often not specified directly.  It can be calculated from the peak current specification
(Ipk) as P = 24N(Ipk).  If this results in an excessively large power rating for the
normal system operation, the power-up initialize inhibit parameter can be set to
prevent the power up moves (see Section 4.6).

In-rush current at initial power-up is the idle current plus the current required to
charge the nominal 470 uF capacitance at each pump power input.  For almost any
power supply, this current will be well within its capacity.

9.1.2 Type Selection

There are three general types of power supply: unregulated DC, linear regulator
types, and switching regulator types.  Each has different selection considerations.

The unregulated supply is the cheapest and simplest.  Its output voltage will
typically vary about 5% to 20% from no-load to rated load.  In addition, the output
will vary in proportion to the input line voltage.  Since the driver is specified for
24Vdc ± 10%, it is not recommended for use with the V3 pumps.

The linear regulator supply usually has a current limiting feature which must be set
high enough to handle any current transients generated by the syringe drive.  If the
current limit is too low, erratic pump operation will result with no obvious cause.



P/N 23454 Rev. D, 09-02-04
89

Such a condition can be detected by monitoring the power with a storage
oscilloscope.  Another possible consequence of low current limit is a too-slow power
rise at turn-on.  Linear power supplies are inefficient, requiring larger power input,
more space, and more weight than the switching power supplies.

A switching power supply is the preferred choice.  It offers higher efficiency, lower
heat generation, and a well-filtered output.  Some switching power supplies have
a minimum load current requirement.  Since the pump can idle as low as 60
milliamps, the supply should be rated for a minimum load current equal to the
minimum total system idle current.  A ballast resistor may be added across the
supply output to guarantee the minimum load requirement of the supply.

9.2 SYSTEM WIRING PRACTICES

In a system with two or more syringe pumps,  the power distribution wiring can
affect the system reliability.  The best system wiring practice is to connect each
drive module with an individual pair of power leads from the power supply to that
individual module, as shown in Figure 6-1.  The pair of leads for each module
should be twisted together along their length to reduce radiated fields.  Route the
twisted pairs of power leads close to the chassis if a metal chassis is used for
mounting.  This aids in reducing unwanted stray electromagnetic fields in the overall
equipment design.

The use of an output filter in each line can reduce radiated and conducted EMI.
The simplest  filter consists of a series inductance of about  10 uH to 20 uH (rated
at 1.5 amps) inserted in-line with the positive power wire.  Best results are usually
obtained when the inductance is located nearest to the pump.

The J1 interface connector has two power input pins and two ground pins.  Good
wiring practice uses  both opposing pins for the positive lead and both opposing
pins for the ground lead.  The redundant connections assure a low impedance,
reliable set of power connections.

If communications upsets occur during ESD testing when high-voltage arcs are
injected into either the controller or the syringe drive, insertion of a ferrite common-
mode choke with good high-frequency impedance may eliminate the problem.  The
power and communications lines should be looped two or three times through a
ferrite toroid having an outside  diameter of about one inch.

Syringe drives should not share the same power leads as large, noisy electrical
loads such as motors and large solenoids.  While the syringe design contains
filtering to reduce susceptibility to electrical noise conducted via the power supply
wires,  large current or voltage transients could be harmful to the pump. 

9.3 LOW VOLTAGE CONDITION

If the pump supply voltage decreases below the internal reference minimum (20V),
a "Low Voltage" error condition is generated.    While the voltage remains below  the
minimum, valve and syringe moves are inhibited.  For supply voltages down to
about 8 Vdc, the internal control electronics and memory are not affected and other
instructions, such as I/O operations and queries, will still operate normally after the
low voltage error message has been reported or cleared.



P/N 23454 Rev. D, 09-02-04
90

Some power supplies will turn on gradually.  If the rise time of the supply is slow
enough, the internal computer may generate a "Low Voltage" error when the pump
powers up.  This will not cause any operational problems after the power has
stabilized and communications has been established.  The error message will have
to be cleared before any other commands can be executed.  The message can be
cleared by querying the pump status.

If low voltage errors persist when a voltmeter check of the power supply appears to
show a proper voltage, the problem may be transients on the power supply leads.
Transients may be induced by wiring which passes close to other high-current
electrical loads, by current-limiting operation of linear supplies, by transients passed
through the power supply from the ac power source used by the supply, or by using
a wire size which is too small for the length.

9.4 POWER CONSERVATION FOR BATTERY APPLICATIONS

The V3 pump draws a current which depends upon the power supply voltage, the
idle logic current, and the motor currents.  The current consumption can be
minimized in some applications through the pump programming.

The supply voltage is inversely proportional the current consumption.  This is
because the pump is a constant power device.  As the voltage increases, the
current decreases so the product of the two will remain approximately constant.
The capacity of a battery for portable operation is thus best estimated using a watt-
hour rating (watt-hours = ampere-hours x volts).

The motor current is the sum of the valve motor and syringe motor demands.  The
valve motor draws current during a valve move, and automatically turns off when a
valve  ends.  The valve motor automatically turns on at the start of a valve move.

The Syringe motor normally idles at half-power.  When a syringe move begins, the
syringe switches to full-power operation for the duration of the move.  When the
move ends, the power automatically switches back to half-power.   If the syringe is
not  required to hold a significant back-pressure, the syringe motor can be turned
off at the completion of each move, thereby reducing idle power to the logic idle
power alone.  The logic idle power alone is typically about 2.4 Watts.



P/N 23454 Rev. D, 09-02-04
91

10.0 MOUNTING & INSTALLATION

10.1 MOUNTING a SINGLE PUMP

The mounting dimensions of the VersaPump 3 are shown in Figure 10-1.  The drive
is usually base mounted  using the holes in the bottom.  The stacking holes on the
back may also be used for mounting with a bracket. 

It is recommended that the pump be mounted to a solid base.  If the pump is
mounted to an instrument panel,  the panel should be reinforced to create a very
stiff, rigid surface.  If these precautions are not observed, any vibrations from the
operation of the drive may be coupled into the instrument face.  The instrument face
can then act as a loudspeaker, amplifying all pump acoustics.  Where possible, a
vibration isolation material may be used between the pump and the mounting
surface to improve acoustic isolation from the mounting structure.  A material such
as Sorbothane (see www.sorbothane.com) is recommended.   A gasket cut from a
mouse pad can serve in a breadboard as a convenient isolator.  When selecting
materials, remember that different materials are acoustically transparent at some
frequencies and acoustically opaque at other frequencies.  Mechanically "lossy"
materials are best.

An instrument enclosure to which the drive is mounted should have good electrical
conductivity to the system chassis ground.   This will reduce radiated emissions
from the equipment.  A wire from the pump chassis to the equipment chassis will
generally  not  provide a satisfactory system ground because it does not provide the
high-frequency transient conductivity required.    If possible, a metallic enclosure or
a plastic enclosure with RF shielding is preferred.

The pump has been designed with a large operating ambient temperature margin.
However,  it is prudent  to allow air venting for an enclosure to improve the system
reliability.  In many applications, a cooling air inlet at the bottom of an enclosure and
a hot air vent near the top can provide adequate ventilation.  Only when operating
in ambient temperatures near the maximum would any kind of forced air cooing
become desirable.

An alternate mounting technique uses the stacking holes on the rear panel of the
pump to attach the pump to a mounting bracket.  The bracket contains the threaded
nuts to capture the mounting screws.  The PEM company (www.pemnet.com)
carries a well-designed and varied selection of such nuts.

10.2 STACKING DEVICES VERTICALLY

The V3 pump has been designed to permit stacking two devices vertically.  The
devices can be two V3 pumps or one V3 pump and one electronically-controlled
selector valve such as the Kloehn Intellect.  In the latter case, an Intellect would be
the upper device and a pump would be the lower device.  This arrangement also
offers the advantage of the shortest possible distance between the pump and
Intellect valves.  This produces the lowest dead volume between valves, while
providing 13 ports.



P/N 23454 Rev. D, 09-02-04
92

Figure 10-1:     Mounting Dimensions for VersaPump 3



P/N 23454 Rev. D, 09-02-04
93

11.0 SPECIFICATIONS

11.1 ENVIRONMENTAL

Temperature
Operating -25 to 55 °C (-13 to 131 °F)
Storage -25 to 85 °C (-13 to 185 °F)

Humidity 5 to 95% RH, non-condensing
Altitude

Operating 10,000 feet pressure altitude, maximum
Non-operating 40,000 feet pressure altitude, maximum

11.2 PHYSICAL

Height 5.00 inches 127 mm
Width 2.55  inches 64.77 mm
Depth  4.60  inches 116.8 mm
Weight 2.5 pounds 1.13 Kg

11.3 POWER

Voltage 20 to 30 Vdc, 24 Vdc nominal
Current (at 24 Vdc)

Idle, syringe on 0.24 to 0.36 Adc
Idle, syringe off 0.12 Adc
Valve move 0.8 Adc + 0.7 Apk @ 1.67 KHz (sine)
Syringe move 0.5 Adc
Turn-on surge 1.25 A peak, 6 msec

Power consumption
Idle, syringe off 3 Watts, max.
Idle, syringe on 9 Watts, max
Syringe or valve moving 20 Watts, max.

11.4 SYRINGE AXIS

The syringe axis is designed to drive a syringe having a  full-stroke length of 3 cm.

11.4.1 Resolution

The syringe axis is available in two resolutions: 6000 steps and 12,000 steps for the
same 3 cm stroke length.   The resolution is predicated on mechanical design and
is not electronically “inflated”.  Which of the two resolutions is applicable depends
upon which model is purchased.

11.4.2 Accuracy

Accuracy is described by two parameters: accuracy and precision.  For both, the
value given is expressed as a percentage of the full stroke of the syringe.  Accuracy
measures how closely a dispensed amount of fluid corresponds to the ideal



P/N 23454 Rev. D, 09-02-04
94

programmed value.  Precision describes the abil ity of the drive to deliver the same
quantity of fluid for the same size programmed dispenses.

By analogy, consider an archer shooting a group of arrows at a target.  Precision is
a measure of how closely the arrows are spaced on the target, called the size of the
group.  Accuracy is a measure of how far the center of that group is from the center
of the target.  The values for the VersaPump 3 series of pumps are:

Accuracy 0.10% CV (typical, full-stroke), 0.21% max
Precision 0.03% CV (typical, full-stroke), 0.06% max

Additional factors contributing to system accuracy are the total syringe size, any air
bubbles or gaps, and any elasticity in the fluid path.  The syringe tolerance is a
maximum  ±1%  of total volume.  This error contribution is proportional to the
amount dispensed as a fraction of syringe volume.  Air bubbles, gaps, and tubing
elasticity can contribute errors due to compressibility or expansion of their volumes.
Such errors are proportional to the positive or negative fluid pressures in the fluid
path.

For small dispensed volumes, the accuracy of the volume can be sensitive to the
means by which the volume is removed from the probe of tubing tip.  Any meniscus
can contribute several microliters of dispense error.  To minimize these errors,
submerge the tip into the destination fluid or "touch off" the tip against the container.

11.4.3 Speed

Syringe speeds are measures in steps per second. The definition of a step is one
increment of motion.

Range, normal 40 to 8000 steps per second
5 minutes full-stroke to 1 second full-stroke

Range, extended < 1 step per minute
> 200 minutes full stroke.

11.4.4 Syringe Thrust and Pressure

Syringe thrust is related to syringe fluid pressure by the relation

psi   = 19.3 x (Thrust - Friction) / Volume

where “Volume” is total rated syringe volume in milliliters (cc),
Thrust is drive force in pounds,
Friction is the syringe piston friction force in pounds.

The 12000-step model has a typical maximum thrust of about 43 pounds
independent of the speed.  For the 6000-step model, as the syringe speed is
increased, the available syringe thrust decreases, as shown in the next table.

Syringe friction is larger for the larger syringes.  The largest is the 5 mL, with about
three to five pounds of friction.  The smallest syringes have about one to three
pounds of friction.



P/N 23454 Rev. D, 09-02-04
95

Speed (sps) Force (pounds)
4500 or less 60
6000 40
7000 38
8000 33

11.5 VALVE AXIS

The valve axis controls a user-selected valve mounted  to the faceplate of the
pump.  The valve axis is configurable for different types of valves  Thus a single
model of the VersaPump 3 can accommodate any of the available valve types
without modification.  This is a feature of all Kloehn syringe pumps.  Distribution and
non-distribution types are available with from two to six ports.

11.6 COMMUNICATIONS

The VersaPump 3 syringe drive has two serial communications protocols:  OEM
and DT.  The two protocols are compatible with the corresponding Cavro protocols.
In each case, the pump acts as a slave device.  It cannot initiate communications,
but can only respond to commands from a controlling device.  All communications
are serial, half-duplex data transfers.  The RS232 and RS485 interfaces are
supported.
For both standards, the communications parameters are:

Baud rate 1200, 2400, 4800, 9600, 19200, 38400 baud
Data bits 8
Parity none
Stop bits 1
Flow control None
Physical protocols RS485, RS232
Logical protocols DT, OEM

All communications use ASCII characters for both commands and responses.  All
numbers are expressed as ASCII decimal numbers.  The two protocols, DT and
OEM, are explained in Section 6.3.

11.7 I/O INTERFACE

The following subsections describe the User Inputs/Outputs (User I/O) available on
the 50300 Syringe Drive Unit.  There are 3 parallel digital outputs, 3 parallel digital
inputs, one digital voltmeter input, and a serial I/O expansion port for adding
additional I/O externally.

11.7.1 Digital Outputs

There are three CMOS digital outputs.  These are 5 volt “HC” outputs, compatible
with 5V CMOS and TTL.  The outputs can be controlled from within a program or
by external command.



P/N 23454 Rev. D, 09-02-04
96

DC or peak load current: ± 20 mA  maximum per output, ± 40 mA total for all
three outputs

Output resistance: 40 S typical
Output high: > 4.8 Vdc nom, Io = 20 µA
Output Low: < .1 Vdc, Io = 20 µA

11.7.2 Digital Inputs

There are three protected digital inputs, each of which has a  4.7 Kohm pull-up
resistor to the internal +5 Vdc.  See figure 2-2 for the input equivalent circuit.

The inputs may be used  to control pump operation, or may be sampled at any time
by an external controller.  One input may be programmed to act as an external
dispense “stop” command.  One input may be used to take syringe position
“snapshots” on-the-fly for later interrogation.

Logic compatibility: TTL, 5V CMOS
Input voltage, Maximum: 100 V peak for 8.3 msec maximum

+30 Vdc to -25 Vdc, continuous, maximum
Logic "true" level: < 1.0 V
Logic "false" level: > 3.5 V or open circuit

11.7.3 Digital Voltmeter Input

There is one digital voltmeter input.  This input performs an 8-bit analog-to-digital
conversion.  An anti-aliasing input filter is included.  See figure 2-2  for the input
equivalent circuit.

The voltmeter specifications are:

Input impedance: 1 Megohm DC, 20 Kohm into 0.1 :F AC
Resolution: 8 bits (0 - 255), 20 mV/LSB
Accuracy: +/- 20 mV (1 LSB)
Conversion time: 18 :sec
Range: 5.10 V full scale
Input Filter: 80 Hz lowpass, -6 dB/octave

11.7.4 Serial I/O Expansion Port

The Serial I/O Expansion Port (SIO) provides a means to expand the number of
external inputs and outputs of the pump.  An I/O Expander board (P/N 50765) is
available to add  16 additional inputs and 16 additional outputs.  Each of the
expander outputs can sink up to 250 mA at voltages to 40 Vdc.

The SIO has one 6-pin interface which simultaneously shifts output data out from
the port, input data into the port, synchronous clock pulses out from the port, and
provides a timing strobe signal output.  The strobe output is active low during a data
I/O operation.  +5V and ground, for powering external I/O circuits, are available on
the connector.



P/N 23454 Rev. D, 09-02-04
97

There are two modes of operation: 1-byte and 2-byte.  See section 3.5.4 for details
of the serial port operation.  See figure 11-1 for 2-byte waveform timing figure 11-2
for 1-byte waveform timing.  The clock edge-to-data signal timing is the same for
both 1-byte and 2-byte operating modes.

Inputs:
Logic "0" +3.5 V to +5.0 V
Logic "1" -0.3 V to +1 V
Input current < 10 :A

Outputs:
Logic "0" < 0.4 V at 1.6 mA sink
Logic "1" > 4.2 V at 0.8 mA source
+5V output: 100 mA dc to load, maximum

Clock:
Quiescent level Logic "0"
Active edges Positive-going
Frequency 115.2 KHz

Data Strobe:
Quiescent level Logic "1"
Data hold time 0 sec

Data transfer cycle time (strobe pulse width):
1-byte mode 93 ± 4 :sec
2-byte mode 187 to 262 :sec

Figure 11-1       Serial Expansion I/O timing, 2-byte mode



P/N 23454 Rev. D, 09-02-04
98

Figure 11-2       Serial Expansion I/O timing, single-byte mode

11.7.5 Error LED

The Error LED output provides drive for a light-emitting diode (LED) or external logic
whenever an error condition exists within the pump.  See Section 5 for a list and
explanations of error conditions.  Refer to Section 2.2.2  for Error output details.

Error +: internal +5 Vdc supply, internally current limited through 330 ohms
Error -: 5 ohm resistance to ground when in ON (error) condition,

open-circuit (> 1 Mohm) when in OFF (normal no-error) condition

11.8 USER PROGRAM MEMORY

Communications Buffer/ RAM: 170 bytes
Non-volatile program memory: 390 bytes
Non-volatile program retention: 15 years, minimum
User program capacity: 10 programs



P/N 23454 Rev. D, 09-02-04
99

APPENDIX A:   COMMAND SET SUMMARY

A.1 COMMANDS

The commands are presented in alphabetical order.    The special notations are explained
below:

1. (n ) The argument range is in parenthesis.
2. [n] are the factory default values.  If there is no default, the [n] is omitted.
3. (i) denotes a command which executes without a “R” (Run) command.
4. (p) denotes a command which can only be used within a program string.
5. {n.n.n} denotes the section in which the more detailed command description

may be found.
6. The notation “12000 or 6000" refers to either the 12000-step model or the

6000-step model.

An absolute syringe move, busy   (n: 0...12000 or 6000, @)  {4.1.1}

an absolute syringe move, ready  (n: 0...12000 or 6000, @)  {4.1.1}

B move 3-way valve to bypass  {4.2.2}

cn set stopping speed (n: 40...8000, @)  {4.1.2}

Dn relative syringe dispense, busy  (n: 0...12000 or 6000, @) {4.1.1}

dn relative syringe dispense, ready (n: 0...12000 or 6000, @) {4.1.1}

En (i) program save  (n: 1...10) {4.4.1}

en (i) program erase (n: 1...10) {4.4.1}

F (i) query buffer status  {4.7}

fn+ set program flag #n
(n: 1...6 = general-purpose use

7 = enable syringe move against User Input #3 Stop signal
8 = stop on second high-to-low User Input #3 transition
9 = disable the SET HOME button)  {4.9.2}

fn- clear program flag #n (n: 1...9)  {4.9.2}

fn? (i) query program flag #n status (n: 1...9)  {4.9.2}

fnp (p) if flag #n is set, then clear it and jump to label "p"
(n: 1...8  p: a...z, A...Z) {4.9.2}

fn-p (p) if flag #n is clear, then jump to label "p" (n: 1...8 p: a...z, A...Z) {4.9.2}

g...Gn (p) repeat commands between g and Gn "n" times
(n: 0...30000, 0=forever, @)  {4.4.3}

H (p) halt program (breakpoint)  {4.4.2}



P/N 23454 Rev. D, 09-02-04
100

hn handshake dispense, external trigger (n: 1..3, @) {4.4.1, 8.3.3}

h-n handshake dispense, immediate execution (n: 1..3, @) {4.4.1, 8.3.3}

I (capital “i”) move 3-way valve to input  {4.2.2}

inp (p) if input bit is "true" (low level), then jump to label "p"
(n: 1...3 = User Inputs 1...3
 11...18 = Expansion I/O  input byte 1, bits 1...8
 21...28 = Expansion I/O  input byte 2, bits 1...8

@
 p: a...z, A...Z)  {4.3.3}

i>np (p) if Digital Voltmeter input is less than "n", then jump to label "p"
(n: 0...255, @ p: a...z, A...Z)  {4.3.3}

i<np (p) if analog (digital voltmeter) input is greater than "n", then jump to label "p"
(n: 0...255, @  p: a...z, A...Z)  {4.3.3}

Jp (p) jump always to label "p" (p: a...z, A...Z)  {4.4.3}

jn (p) execute program #n and then return to next instruction in this program
(n: 1...10, @)  {4.4.3}

Kn (p) set number of syringe backlash steps (n: 0...500)  {4.1.2}

k (i) query the value of the software counter  {4.9.1}

kn set the software counter value to "n"  (n: 0...65535, @)   {4.9.1}

k+n add "n" to the software counter         (n: 0...65535)   {4.9.1}

k-n subtract "n" from the software counter (n: 0...65535, @)  {4.9.1}

k^n exchange the contents of counter memory “n” with the active counter
(n:   1...8) {4.9.1}

k<np (p) if the software counter is less than "n", then jump to label "p"
(n: 0...65535, @ p: a...z, A...Z)  {4.9.1}

k=np (p) if the software counter is equal to "n", then jump to label "p"
(n: 0...65535, @ p: a...z, A-Z)  {4.9.1}

k>np (p) if the software counter is greater than "n", then jump to label "p"
(n: 0-65535, @ p: a...z, A...Z)  {4.9.1}

Ln set syringe acceleration slope, Hz/sec = 2500 x "n" (n: 1...20, @)  {4.1.2}

ln set syringe deceleration slope, Hz/sec = 2500 x "n" (n: 1...20, @)  {4.1.2}

Mn delay "n" milliseconds (n: 1...60000, @)  {4.4.3.3}

mn turn motors on/off (n: 0=syringe motor off, 1=syringe motor on, 2=valve motor
off, 3=valve motor on)  {4.9.5}



P/N 23454 Rev. D, 09-02-04
101

O move 3-way valve to output  {4.2.2}

on move valve to position "n" (n: 1-8, @  valve-dependent)  {4.2.2}

Pn relative pickup-aspirate, busy  (n: 0...12000 or 6000, @)  {4.1.1}

pn relative pickup-aspirate, ready (n: 0...24000 or 6000, @)  {4.1.1}

Q (i) query pump status  {4.7}

qn (i) read stored program #n (n: 1...10)  {4.4.1}

R (i) run program in RAM  {4.4.1}

r n (i) run stored program "n"  {4.4.1}

Sn set syringe Top Speed (n: 0...34, @)  {4.1.2}

sn send SIO byte (n: 0...255, @)  {4.3.1}

sn,m send SIO double byte
(n: 0...255, @    2nd byte    m=0...255, @   1st byte)  {4.3.1}

s<np (p) if serial input byte value is less than "n", then jump to label "p"
(n: 0...255, @  p: a...z, A...Z)  {4.3.3}

s>np (p) if serial input byte value is greater than "n", then jump to label "p"
(n: 0...255, @ p: a...z, A...Z)  {4.3.3}

tn exit the error handler routine in the way determined by “n”
(n: 1 = Return program execution to the instruction following the

      instruction which caused the error
2 = Restart the program from the beginning
3 = Perform a normal error exit with an error message
4 = Retry the instruction which caused the error) {4.8.2}

T (i) terminate execution of command or program  {4.4.2}

Un turn on an output bit; "on" (set to low)
(n: 1...3 = User Inputs 1...3
 11...18 = Expansion I/O  input byte 1, bits 1...8
 21...28 = Expansion I/O  input byte 2, bits 1...8
 p: a...z, A...Z)  {4.3.1}

U#n (i) turn on User Output bit “n” immediately (set to low)     (n: 1...3) {4.3.1}

un turn off an output bit; "off"
(n: 1...3 = User Inputs 1...3
 11...18 = Expansion I/O output byte 1, bits 1...8
 21...28 = Expansion I/O output byte 2, bits 1...8
 p: a...z, A...Z)  {4.3.1}

u#n (i) turn off User Output bit “n” immediately (set to high)     (n: 1...3) {4.3.1}



P/N 23454 Rev. D, 09-02-04
102

Vn (i) set syringe Top Speed in steps/sec (n: 40...8000, @)  {4.1.2}

vn set syringe Start Speed in steps/sec (n: 40...1000, @)  {4.1.2}

Wn initialize syringe and valve (n: 4=move valve to port 1, then move syringe 
to "soft limit";  5=save current syringe position as zero)  {4.1.3}

X (i) repeat last command string; does not apply to queries {4.9.6}

x? query error number (see Section 5.1) last trapped  {4.8.3}

y<np (o) if syringe position is less than “n”, then go to label “p”
(n: 0...12000 or 6000 p=a...z, A...Z) {4.4.3}

y=np (o) if syringe position equals “n”, then go to label “p”
(n: 0...12000 or 6000 p=a...z, A...Z) {4.4.3}

y>np (o) if syringe position greater than “n”, then go to label “p”
(n: 0...12000 or 6000 p=a...z, A...Z) {4.4.3}

Yn initialize the syringe and select the port specified by the "~Y" parameter
(n: 4...5, see "Wn")  {4.1.3}

Zn initialize the syringe and select the port specified by the "~Z" parameter
(n: 4...5, see "Wn")  {4.1.3}

znp trap error #n and jump to a user error handler routine at program label “p”
(n: 1...26 p: a...z, A...Z)  {4.8.1}

? (i) query the syringe position  {4.1.4}

?1 (i) query the syringe Start Speed  {4.1.4}

?2 (i) query the syringe Top Speed   {4.1.4}

?3 (i) query the syringe Stop Speed  {4.1.4}

?4 (i) query the User Input 1 status, reply "1" if at low level  {4.3.2}

?5 (i) query the User Input 2 status, reply "1" if at low level  {4.3.2}

?6 (i) query the User Input 3 status, reply "1" if at low level  {4.3.2}

?7 (i) query the User Analog Input voltage, volts = reply x 0.02  {4.3.2} 

?8 (i) query the valve position  (1=A, 2=B, etc.)  {4.2.3}

?9 (i) query the number of unused bytes in NVM  {4.4.1}

?10 (i) query the numerical value of the serial I/O input byte, or of byte 1 for a
 2-byte mode  {4.3.2}



P/N 23454 Rev. D, 09-02-04
103

?n (i) query the status of a serial I/O input bit, report "1" if at low level
(n: 11...18 = Expansion I/O  input byte 1, bits 1...8
 21...28 = Expansion I/O  input byte 2, bits 1...8
 p: a...z, A...Z)  {4.3.2}

?19 (i) query NVM, reply list of program numbers in NVM  {4.4.1 }

?20 (i) query numerical value of serial I/O input byte 2  {4.3.2}

?29 (i) query contents of the syringe position snapshot memory  {8.3.5}

?30 (i) query the acceleration followed by the deceleration values {4.1.4}

?31 (I) query the number of syringe anti-backlash steps. {4.1.4}

$ (i) query number of "valve stalls"  (reply: 0=no stall, 1=stalled once,  2=stalled
twice)  {4.2.3}

% (i) query number of valve movements since pump turned on {4.2.3}

& (i) query firmware revision number {4.7}

* (i) query pump supply voltage, volts = number x 0.2  {4.7}

:p (p) set program label (p: a...z, A...Z)  {4.4.3}

! (i) store current syringe speed and backlash values in NVM  {4.1.2}

~? (i) query command operating mode (reply: "-1" if in configuration mode, else
    reply with syringe position)  {4.7}

~A   (~a) (i) query the autostart program number {4.6}

~An (~an) (i) set autostart program number to "n" (n:  0...10, 0=none) [0] {4.6}

~B   (~b) (i) query the communications baud rate setting (see ~Bn) {4.6}

~Bn (~bn) (i) set communications baud rate [3] {4.6}

n Baud rate n Baud rate
1   38,400 5    2,400
2   19,200 6    1,200
3    9,600 7      600
4    4,800 8      300

~H   (~h) (i) query the HOME button mode {4.6}

~Hn (~hn) (i) set the HOME button mode (n: 0=enabled, 1=disabled) [0] {4.6}

~I     (~i) (i) query the power-up valve move mode {4.6}

~In   (~in) (i) set the power-up valve move mode (n: 0=enabled, 1=disabled) [0] {4.6}



P/N 23454 Rev. D, 09-02-04
104

~L    (~l) (i) query User Input 3 operating mode (reply: 0=normal "logic",  1=dispense
"limit")  {4.6}

~Ln (~ln) (i) set User Input 3 mode (n: 0=normal "logic",  1=dispense "limit") [0] {4.6}

~P   (~p) (i) query communication protocol  {4.6}

~Pn (~pn) (i) set communications protocol   (n: 1=DT, 2=OEM) [0] {4.6}

~S   (~s) (i) query serial I/O mode (reply:  1=1-byte,  2=2-byte)  {4.6}

~Sn (~sn) (i) set Expansion I/O mode to 1-byte or 2-byte transfers
(n: 1=1-byte, 2=2-byte) [1] {4.6}

~V   (~v) (i) query the valve type  {4.2.3}

~Vn (~vn) (i) set valve type  {4.2.1}

 n Valve Type  n Valve Type
 0 no value
 1 3 way non-distribution valve  2 3 way distribution valve
 3 4 way non-distribution valve  4 4 way distribution valve
 5 undefined  6 5 way distribution valve
 7 undefined  8 6 way distribution valve

~Y Query the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Y4" command.  {4.1.4}

~Yn Select the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Y4" command.  {4.1.3}

n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H

~Z Query the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Y4" command.  {4.1.4}

~Zn Select the valve position to which the valve will go just prior to moving the
syringe to the soft limit using the "Z4" command.  {4.1.3}

n Port n Port
1 A 5 E
2 B 6 F
3 C 7 G
4 D 8 H



P/N 23454 Rev. D, 09-02-04
105

A.2 VARIABLES

This section lists the general and indirect variables which can be used with the “@n” syntax
for command argument values.  See Section 4.5 for details.

The general variables and their argument values are:

Argument Variable Argument Variable
   @11    z1    @15    z5
   @12    z2    @16    z6
   @13    z3    @17    z7
   @14    z4    @18    z8

The indirect variables are:

@1 Numerical value of Expansion input byte #1, read as a two-digit packed BCD
number (0...99)

@2 Numerical value of Expansion input byte #2 #1, read as a two-digit packed
BCD number (0...99)

@3 Digital Voltmeter input (0...255, corresponds to 0...5 Vdc)

@4 Digital Voltmeter input (two-digit BCD, normalized to 0...99.  Normally
used for external displays driven from the
Expansion port.)

@5 Current Software Counter value (0...65535)

@6 Current valve position (1...number of ports for valve type)

@7 Current syringe position (steps, normally used in other commands)

@8 Current syringe position (two-digit BCD, normalized to percent of full
stroke, 0...99.  Normally used for external
displays driven fro the Expansion port.)

@9 most recently-sent value of the byte #2 sent with the sn,m  command

@10 most recently-sent value of the byte #1 sent with the sn,m command

The instructions which can use these variables are:

Instruction scaled
An, an move syringe to absolute position yes
cn set stopping speed yes
Dn, dn dispense, relative to current position yes
g...Gn repeat loop no
inp if serial input bit true,  jump to "p" no
i>np if analog input > "n",  jump to "p" no
i<np if analog input < "n",  jump to "p" no
jn do program #n, then return no
Kn set number of backlash steps yes
kn set software counter = "n" no



P/N 23454 Rev. D, 09-02-04
106

k+n add "n" to software counter no
k-n subtract "n" from software counter no
k<np if counter < "n", then jump to "p" no
k=np if counter = "n", then jump to "p" no
k>np if counter > "n", then jump to "p" no
Ln set acceleration slope no
ln set deceleration slope no
Mn delay "n" milliseconds yes
on move valve to position "n" no
Pn, pn aspirate, relative to current position yes
Sn set top speed no
sn send SIO byte no
sn,m send SIO double byte no
s<np if serial input < "n", then jump to "p" yes
s>np if serial input > "n", then jump to "p" yes
Vn set top speed (steps/sec) yes
vn set start speed (steps/sec) yes
y<np if syringe position < “n”, jump to “p” no
y=np if syringe position = “n”, jump to “p” no
y>np if syringe position > “n”, jump to “p” no
~An set autostart program number no
~Bn set communications baud rate no



P/N 23454 Rev. D, 09-02-04
107

APPENDIX B:     STATUS and ERROR CODES SUMMARY

Each status byte has two forms: busy and ready.  "Busy" means the device is executing
a command or program.  "Ready" indicates the device is  ready to receive another
command.  The status messages are:

    ASCII    Error     Decimal        binary   Status
busy  ready .  # . busy    ready 76543210

@  '  0 64   96 01X00000 no error
A  a  1 65   97 01X00001 syringe failed to initialize
B  b  2 66   98 01X00010 invalid command
C  c  3 67   99 01X00011 invalid argument

D  d  4 68 100 01X00100 communication error
E  e  5 69 101 01X00101 invalid “R” command
F  f  6 70 102 01X00110 supply voltage too low
G  g  7 71 103 01X00111 device not initialized

H  h  8 72 104 01X01000 program in progress
I  i  9 73 105 01X01001 syringe overload
J  j 10 74 106 01X01010 valve overload
K  k 11 75 107 01X01011 syringe move not allowed

L  l 12 76 108 01X01100 cannot move against limit
O  o 15 79 111 01X01111 command buffer overflow
P  p 16 80 112 01X10000 use for 3-way valve only
Q  q 17 81 113 01X10001 loops nested too deep

R  r 18 82 114 01X10010 program label not found
S  s 19 83 115 01X10011 end of program not found
T  t 20 84 116 01X10100 out of program space
U  u 21 85 117 01X10101 HOME not set

V  v 22 86 118 01X10110 too many program calls
W  w 23 87 119 01X10111 program not found
X  x 24 88 120 01X11000 valve position error
Y  y 25 89 121 01X11001 syringe position corrupted
Z  z 26 90 122 01X11010 syringe may go past home

Bit 5 of the status byte, denoted by "X" above, is set to "0" if the pump is busy, and is set
to a "1" if  the pump is not busy.



P/N 23454 Rev. D, 09-02-04
108

APPENDIX C     SAMPLE QBASIC COMMUNICATIONS PROGRAM

This section presents two typical driver functions:  send and receive a string, and test
for busy status.  These functions have been written and tested in the QBasic syntax as
supplied with DOS 6.x  [TM].  The structures can be easily converted to Visual Basic or
ANSI C.  The "GOTO" statements can be used, or a more structured style can be
employed.

The communications channel for the syringe drive is opened by the statement:

OPEN  "COM2: 9600, N, 8, 1, CS0, DS0, CD0, RS" FOR RANDOM AS #1

When the program ends, the statement below must be used to close the channel.

CLOSE #1

The preceding two QBasic statements will need to be developed as function calls in
ANSI C or Visual Basic if an equivalent library function is not available.  Windows
programs should use the Windows Applications Programming Interface (API) for I/O
handling whenever possible.  The driver code presented in this manual is intended as a
sample of driver structures to facilitate the development of user drivers.

Send and Receive a String

The following QBasic code accepts a string and send it to the syringe drive.  It waits a
short interval (>15 ms) and receives the response string.  The response string is then
parsed for the status byte.  If an error status has been returned, the error is identified
and an error message string is generated.  The string value "Pump$" contains the string
to be sent, including the pump address number.  The response, if any,  is returned in
the string variable "PumpIn$".  Error messages are printed from within the module.

'****************** UTILITY MODULE: GetPump subroutine *****************
sends command string, gets reply, parses reply
' This is used by other subroutines for pump communications
' Pump$ = command string to send,    pumpIn$ = response string returned
' "eflag" indicates error status:  0 = no error,  1 = error status;  set to 0 before '

entry into module.
‘
GetPump:
'********* send pump command and get response ************

PRINT #1, pump$; CHR$(13) 'send command string with <CR>
FOR n = 0 TO 1000: NEXT n 'delay to receive entire reply
In$ = INPUT$(LOC(1), #1) 'get reply string from pump
IF MID$(In$, 1, 1) <> "/" THEN

         PRINT "COMM ERROR: no response from pump"
         eflag = 1                     'set error flag ON
         GOTO gp2                      'exit module

END IF
'
 



P/N 23454 Rev. D, 09-02-04
109

'********** parse reply for errors *************
status$ = MID$(In$, 3, 1) 'get status byte value
PumpErr$ = "" 'clear error message string
IF ASC(status$) <> 96 AND ASC(status$) <> 64 THEN 'if not  "OK" status
SELECT CASE status$

CASE "a", "A": PumpErr$ = "Syringe not initialized"
CASE "b", "B": PumpErr$ = "Invalid command"
CASE "c", "C": PumpErr$ = "Invalid operand"
CASE "d", "D": PumpErr$ = "Communication error"
CASE "g", "G": PumpErr$ = "Device not initialized"
CASE "i", "I": PumpErr$ = "Syringe overload"
CASE "j", "J": PumpErr$ = "Valve overload"
CASE "k", "K": PumpErr$ = "No syringe move in valve bypass"
CASE "o", "O": PumpErr$ = "Command buffer full"

END SELECT
PRINT "PUMP ERROR: "; status$; "  = "; PumpErr$

          eflag = 1                     'set error flag to ON
END IF

'     '*********** extract any response string ********************
n = LEN(In$) 'begin from last character in reply

gp1:
IF MID$(In$, n, 1) <> CHR$(3) THEN   'End of TeXt character

n = n - 1                     'no, check next character
GOTO gp1

END IF
n = n - 4                          'adjust for length of response
pumpIn$ = MID$(In$, 4, n)         'delete "/0", status byte, & overhead

gp2:
RETURN

When writing an ANSI C version of the preceding drivers, the statement "PRINT
#1, Pump$" in the listing below must be replaced with a function call which
handles the character-by-character details of string transmission.  Also, the "In$
= INPUT$(LOC(1), #1)" statement requires a function call to handle the reception
and construction of the reply string.

Check for Busy Status

This module checks to see if the syringe drive is busy or is ready for another
command.  It returns to the calling routine when the status is "ready".  Note that it
uses the communications module "GetPump" from Section 6.7.1.

'************** UTILITY MODULE: Check Pump for Busy Status************
'    wait for pump to return a "not busy" status
'    no entry parameters, no return value
PumpBusy:

pump$ = "/1Q" 'set up status query string
GOSUB GetPump            'send status query

 IF PumpErr$ <> "" THEN GOTO pb2    'if pump status error, exit routine
IF status$ = "@" THEN GOTO PumpBusy     'else check until "not busy"

pb2:
RETURN



P/N 23454 Rev. D, 09-02-04
110

'****************** UTILITY MODULE: GetPump subroutine *****************
' sends command string, gets reply, parses reply
' This is used by other subroutines for pump communications
' Pump$ = command string to send,    pumpIn$ = response string returned
' "eflag" indicates error status:  0 = no error,  1 = error status;  set to 0 before '

entry into module.
GetPump:
'********* send pump command and get response ************

PRINT #1, pump$; CHR$(13) 'send command string with <CR>
FOR n = 0 TO 1000: NEXT n 'delay to receive entire reply
In$ = INPUT$(LOC(1), #1) 'get reply string from pump
IF MID$(In$, 1, 1) <> "/" THEN

PRINT "COMM ERROR: no response from pump"
eflag = 1                     'set error flag ON
GOTO gp2                      'exit module

END IF
'
'********** parse reply for errors *************

status$ = MID$(In$, 3, 1) 'get status byte value
PumpErr$ = "" 'clear error message string
IF ASC(status$) <> 96 AND ASC(status$) <> 64 THEN 'if not  "OK" status

SELECT CASE status$
    CASE "a", "A": PumpErr$ = "Syringe not initialized"
   CASE "b", "B": PumpErr$ = "Invalid command"
     CASE "c", "C": PumpErr$ = "Invalid operand"
      CASE "d", "D": PumpErr$ = "Communication error"
      CASE "g", "G": PumpErr$ = "Device not initialized"
        CASE "i", "I": PumpErr$ = "Syringe overload"
     CASE "j", "J": PumpErr$ = "Valve overload"
    CASE "k", "K": PumpErr$ = "No syringe move in valve bypass"
               CASE "o", "O": PumpErr$ = "Command buffer full"
      END SELECT

PRINT "PUMP ERROR: "; status$; "  = "; PumpErr$
eflag = 1                     'set error flag to ON

END IF

'     '*********** extract any response string ********************
n = LEN(In$) 'begin from last character in reply

gp1:
IF MID$(In$, n, 1) <> CHR$(3) THEN   'ETX character ?

n = n - 1                     'no, check next character
GOTO gp1

END IF
n = n - 4                          'adjust for length of response
pumpIn$ = MID$(In$, 4, n)         'delete "/0", status byte, & overhead

gp2:
RETURN

When writing an ANSI C version of the preceding drivers, the statement "PRINT #1,
Pump$" in the listing below must be replaced with a function call which handles the
character-by-character details of string transmission.  Also, the "In$ = INPUT$(LOC(1),
#1)" statement requires a function call to handle the reception and construction of the
reply string.



P/N 23454 Rev. D, 09-02-04
111

Check for Busy Status

This module checks to see if the syringe drive is busy or is ready for another command. 
It returns to the calling routine when the status is "ready".  Note that it uses the
communications module "GetPump" from Section 6.7.1.

'************** UTILITY MODULE: Check Pump for Busy Status************
'    wait for pump to return a "not busy" status
'    no entry parameters, no return value
PumpBusy:

pump$ = "/1Q" 'set up status query string
GOSUB GetPump            'send status query

 IF PumpErr$ <> "" THEN GOTO pb2    'if pump status error, exit routine
IF status$ = "@" THEN GOTO PumpBusy     'else check until "not busy"

pb2:
RETURN


